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The patternis of scaling violation of the deep inelastic structure function are inves-
tigated on the basis of the resonance picture. The correspondence arguments between
two complementary pictures, i, e., the resonance and the parton pictures, have enabled
us to discriminate various field theories. Qur main results are that i) the conventional
field theory is incompatible with the resonance picture, thus ruled out as a candidate
for the strong interactions, ii) QCD and the new scaling law may have the capability to
unify the above two pictures. Discussions about the correlation between the resonance
and the valence- (sea-) quark contribution are given, We also show that the solution
satisfying the correspondence requirement give excellent fits to the data for the proton
magnetic form factor.

I. Introduction

In the early stage of the attempts to understand the phenomenon associated with
Bjorken scaling, the parton picture') and the resonance picture?-?:4 had been used as
two theoretical bases which might be expected to complement each other. The obser-
vation of “duality’” in electron-nucleon scattering by Bloom and Gilman? had clearly
indicated the importance of this complementarity.

In recent years significant deviation from Bjorken scaling has been observed both in
the experiments of electron® and muon scattering® off nucleon, and also in neutrino
reactions.”? Many of the recent attempts to understand the scaling violation have been
mainly based on the quark-parton model,}):® or on the renormalizable field theories®~!®
whereas there is hardly any attempt based on the resonance picture. In this sense, among
the two complementary pictures only the parton picture has made a great progress; it
has led to the quark-parton model and to the understanding of scaling violation in terms
of various field theoretical approaches, especially quantum chromodynamics (QCD).

‘This picture has also added some understanding to the resonance-saturation picture (or
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the Bloom-Gilman duality) in QCD.19 In spite of the success of QCD, however, up
to now experimental results cannot conclusively decide which type of field theory is to
be favoured.™) Moreover, recently an interesting scaling law was proposed,’ which
was found to give a beautiful description of the observed pattern of scaling violation.!®)
In view of the above situation, it seems worthwhile to pursure more deligently the afore-
mentioned complementarity between the resonance and the parton pictures,

In order to make this complementarity more powerful and predictive, guided by the
Bloom-Gilman duality, let us hypothesize the following correspondence: The description of
the structure function based on the resonance picture should coincide with the one based
on the parton picture in the limit of large momentum transfer, and the approach to this
asymptotic description should occur in a way that in the finite (small) momentum trans-
fer region the structre function based on the parton picture at least well average the one
based on the resonance picture. Investigations of the scaling violation based on the
resonance picture!?) and the description of the proten magnetic form factor in terms of
the solutions satisfying the correspondence requirement!®) have been done and the use-
fulness of the correspondence arguments was demonstrated.

In this paper we review how to formulate the correspondence requirement mathe-
matically, and how it works to discriminate various field theories (sections II and III).
These studies are performed by taking the moment of the structre function. We give
some discussions on the structure function itself in the resonance picture (section IV).
We also show that the resonance form factors which satisfy the correspondence require-
ment can give excellent descriptions of the experimentally observed behaviour of the

proton magnetic form factor in the large momentum transfer regions (section V).

II. Moment Sum Rules in the Small-@? Region
and the Resonance Saturation

A. Kinematics and Definitions.

In order to study the consequences of the correspondence between the parton or the
field theoretical and the resonance pictures, let us briefly present the theoretical frame-
work of the deep inelastic reactions based on field theories.

Inelastic lepton-nucleon scattering is described by the absorptive part of the forward

current-nucleon amplitude

W#u=2lnjd4xeiq'=<p | (Ja(®), Ju O] 2>

= (—gpu+q”q”)wl (%) +#(ﬁy —%.E‘I‘Qy)(,bv —ﬂ.‘q—'qu)wz(”: q%)

¢ ¢
Tuw=i [ d45e1C0| T (T (5) ] ) | 5> (2)

In the language of field theory, deep inelastic experiment measure the light-cone sin-
gularities of the current commutator {or product) which appears in Egs. (1) and (2).
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This product of two current operators can be analyzed in terms of the operator product
expansion,’® which reads

j dixen=(p| T (T () T, (0) | b

= tl,.u}:}o(p 10 e O) | £ I dixeisrd,, (—x2ie)xee e xpn

+t,,.,,,,f;0<p 1028, @) | 0> [ dxetscedy, (— 22-+ie) sz (3)
where
huw=qudv —*8m
o= guadaqy + £ pplda — £ a8 vpq° — & mfadp. (4)

The moment sum rules which may hold in the limit of large Q% (=—¢?) are
M,(1,Q9) = [ 740w F (@, @) = — Aysr Bz (@) + Ay B2 (@),
My(1, @)= [ TdwwF, (@, @) = Ay, B (@), (5)

where w=2mv/Q? and F,(w, @%) (i=1, 2) are the usual structure functions defined by
Fi(e, @) =W (v, @0, Fy(0, Q) =vW,(v, Q?)/2m,
where m is the mass of target nucleon. A4;, (i=1,2) are the reduced matrix elements

of the local operators O,, ..., and Of,'f «, Detween the spin-averaged nucleon states, e, g..

P10, (0) | pD=1"(p® pP pp+ ppuy—trace terms) Ay, (6)
and E,,(Q?%) are essentially the Fourier transform of the c-number singular functions
4, (—x2+ic) appearing in the operator product expansion, Eq. (3),

B, (@) =0, @) 500 ) [ dixetad, (=52 +i), (7)

where a4,=1/2, a,=1/8. Various theories, such as the conventional field theories
with ultra-vioclet fixed point (CFT),!® QCD®» and the new scaling law (INNSL),1%:6)
give particular prediction about the @*-dependence of E; (€?), i.e., of the moment
integral of the relevant structure functions. The patterns of scaling violation predicted
by the above three theories are®

e,
My, @) =M1, QD ()
2
r(n):{“[I‘ (2+2) (n+3) ] CFT (82)
b(n+1) , NSL (8b)
and

Mz(n, 02) =M2(n: Qg) ‘(—}_Egg;—iﬁz_g)‘r(n)

2 2 1
r(m)= G[l —Wm)—+4}§’m], QCD. (8¢c)

®) For simplicity hereafter we only consider the moment integral of the structure function
Fy(o, @%, e, My(n @9.
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Therefore we can test the theories by studying the @2-dependence of the moment, which
is essentially that of E,(Q%).

B. Moment Sum Rules in the Small &2 Region.

In order to apply the resonance-saturation program to the framework reviewed in the
previous section, we here extrapolate the moment sum rules, Egs. (5), to the small @2
region,

We start with the following experimental observations, When &2 is small (say, Q2<1
GeV?) F,(w, Q%) shows resonance structure whereas it becomes a smooth function of
@ when Q2 becomes large (say @?=4 GeV?). We call, for the sake of brevity, this
smooth function of w the “asymptotic structure function”, F4%(w, @?). The Q*-depen-
dence of F#%{(w, @) is, by definition, completely specified by the moment sum rules,
Then the generalized version of the Bloom-Gilman duality says the following: When
we extrpolate the asymptotic structure function down to the small @2 region (of order
of 1 GeV?) through Eq. {5), replacing the original Bjorken’s variable @ by the Bloom-
Gilman’s o'=w@+m?/Q%,® then the extrapolated structure function well averages the
observed structure function, in a semi-local sense. With the aid of this, we can obtain

the moment sum tules at small @2 region,
My(n, Q) =45+ E,.(@7)
= [Tdw' @) 2F @, @)
~a—2 "o \ =2
=(%%> I uo<@-)dv(”+%) Zm W2 @), 120, (9)
where v,(Q%) =Q%/2m.

C. Resonance Saturation
In the resonance model we have (in the narrow-width approximation)

W0, @)= (2m)2§}w,,(02)6(2my +m?—Q2—M3), (10)

w, (Q%) =gi[G.(@%)]% an
In Eq. (11), G,(@?), the form factor of the resonance with mass M,, is assumed to be
the same for all resonances with the same masses, and g is the effective coupling con-

- stant which is the coupling constant multiplied by the resonance density, i.e.,

gf=};.Pw (M?)xZ. (12)

The sum is taken over different quantum numbers %, specifying each resonance with

the same mass M,, e.g., spin ] and radial quantum number N etc. The moment sum

rules then give

My(n, @) = Sgi(C.(@7))7 1+

M1 Miz ) )

%) The &-variable might be motre appropriate than «’. For present purposes, however,
there is no difference between the two variables and we use o for simplicity. As for the
&-variable, see, O, Nachtmann, Nucl, Phys. B 63 (1973) 237; H. Georgi and H. D. Politzer,
Phys. Rev. Letters 36 (1976) 1281,
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Here we need the knowledge about (i) the behaviour of the resonance form factor
G, (Q?), (ii) the effective coupling constants g% and (iii) the formula for the resonance
masses. The experience with approximate scaling in the resonance models®+# and the
Bloom-Gilman duality almost uniquely require that the resonance form factor should
obey the following *‘scaling formula® with the approximate dipole behaviour for large
Q2

6.@ =6(3p)=(1+5) ™" d=4, (14)

and that the effective coupling constants should behave as gi~1/k. The formula (14)
has also some experimental supports,®® especially for the point that G,(§Q%) may be-
come a function of the scaled variable 1=Q%/M2%. Therefore at first we consider the

form factor

. (15a)

(A) G, (Qz) = [1+ MZE]—d(Q'),/z

The only ambiguity which would give rise to an important effect is an 1/Q2 correction
to Eq. (15a). 'This correction may be reasonably taken into account with the form factor

(B) G.(GZ)=[1+%]M[1 N % ]—d@m

In Eq. (15a, b), d{Q?) is an arbitrary function of QZ, and it will be discussed later. We
also take®d
gt/gi=1/(k+a), (16

which is a simple representation of the behaviour gi~1/k. As for the mass formula,

. {15b)

we take the quadratic one®

Mi=m?4 ptk, k=12, a7
Here we notice that in the earlier work on resonance models,3: 9 d(Q?), the power
of the resonance form factor, was assumed to be independent of @2 and was taken to be
equal to 4, Such an assumption seems to be too restrictive. We therefore prefer to

let d(Q%) have a general Q3-dependence,

III. Large-@? Behaviour of the Moment
and the Patterns of Scaling Violation

In this section we study the large-Q¢ behaviour of the moment, Eq. (13), which was
originally obtained by saturating the structure function with resonances in the small-Q?
region. According to the correspondence requirement, the description of the moment
in the resonance saturation picture should coincide with those predicted by field theories

in the asymptotic limit of large-Q?2,

A. General Results.

*) The linear mass formula, M,=m+ p'k, is also a reasonable one. This, however, gives

essentially the same result as the quadratic one, and we hereafter consider only Eq. (17).
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Inserting Egs. (15), (16) and (17) inte the expression of the moment, for large-@? we
can approximate the sum by an integral with the variable z= (¢#%k+m?) /Q? to get
o dz 1 )—d(@’) . ( mz)
2 N — 2 N n—2 —_—
Mm@ =3[ (141 a+2)=3(1+2- 7)), (18)

er

o —d(0m 2\"2 2
wn, @ =gh [ A (14 L) (Lo (14 ) P (142 )
{18b)
In the limit of large Q2 (C»m?), we may safely set m2/@?=0 in Eqs. (18a, b) and obtain

My(n, &%) =g§I:dxp(1_x)d(eq -1
=g§B(n+1,d@QY), (192)

or
My(n, Q%) =g} B(n+1-95, d(Q%), (19b)

where 1 1=14Q2/M? is essentially the Bloom-Gilman variable. Egs. (19) say in
general that if d (Q?) is independent of @2, as predicted by the CFT,?!) then we should
have the Bjorken scaling in the limit of large@?. On the other hand, since CFT actually
also predicts scaling violation,® we must say that the resonance picture is incompatible
with CFT. According to the correspondence statement, this result indicates that CFT
cannot unify the resonance and the parton pictures and, in this spirit, it seems to be

ruled out as a likely candidate for the underlying strong interactions.

B. Patterns of Scaling Violations.

Here we consider the interesting case where the power of the resonance form factor,
d (62), depend explicitly on @? and increases indefinitely as @2 goes to infinity. In fact,
QCD predicts this behaviour with d (%) behaving roughly as®?

- In (Q2/4%) -
d (@) =4G ln[ln(Q%/Az) ]+p+1, G=4/27, (20)
where p is related to the threshold behaviour (w~1) of the structure function at Q2= @3
Fy(w, @9) ~1(w—- D 21)

Let us consider the two models separately.

B-1) Model A.
If d(@%) increases indefinitely as §2 goes to infinity, then we have

My(n, Q) ~[d(@)]W'(n+1) as @2—>oo, @2)
Insofar as the expression d (Q%) given by QCD, Eq. (20), can be accommodated in the
resonance saturation picture and gives the scaling violation, QCD is compatible with
the resonance picture. This fact partly confirms the explanation of the Bloom-Gilman
duality by QCD. As is easily seen, however, the behaviour of the moment

_~ -1 - 1n(Q%/ A7)
Mz(”: ng’_.ogln t) ’ ¢ ln (Q%/Az) (23)
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is not exactly the one predicted by QCD
M,y(n, Q%) ~t-oln+3), 24)
Note, however, that if we take the limit #— oo of the moment Eq. (19a), we have
My(n, Q1) ~I"(d(Q%)) n—d@,

which gives (by using Eq. (20))

My(n, Q%) ~ f (1)- 46,

Ge (25)

F @ =t"1(ln G ne+p+1/z,
This behaviour is quite similar to the one predicted by QCD, Eq. (24), which means
the behaviour of the moment at least in the large n and large Q? region is quite con-
sistent in both QCD and the resonance picture.

Another interesting case is provided with the choice of d(Q%)

d(Q%) ~(Q%/Qp=, a>0. (26)
Then the moment integral behaves as
My(n, Q%) ~(Q*/QF) 2+, 2n

which is exactly the same pattern of scaling violation predicted by the new scaling law
(NSL)1E:18) with the anomalous dimension y (1)

r(n)y=a(n+1). (28)
This solution seems to be quite intersting on the basis of the correspondence principle
and we should pay special attention to this new scaling law,

It is worthwhile to take notice of the following observation. Edq. (22) suggests that
M,(n, Q%) may become independent of @? when #=—1 (not when #=0). In the
language of the quark-parton model, it is not the total number of quarks and antiquarks,
but the number of valence-quarks which is conserved. Therefore, the @2-indepen-
dence of the moment M,(n, @2) at »=—1 indicates that in Model A resonances can build

up only the valence-quark component of the structure function.

B-2) Model B.
In this model, the moment is given by Eq. (19b) which behaves

My (n, Q) ~(d(Q)]) "1 (n+1-38), as Q*—oo, (29)
when d(Q?) increases indefinitely as Q% goes to infinity. We have here, with Eq. (20),

2/ 42
My (1, @)~ (nt) =n-1+s, 1= 08000 @0
If we take the large-n limit as well as the limit @2—>oco then we obtain
My(n, Q5 ~ f ()i~ -0, (1)
Qi—vco

where f(t) is the same as the one in Eq. (25).
By using Eq. (26) we also have the pattern
M, (n, Q%) ~ (QF/Qf) ~=(»+1-2), (32)
Here we take notice of the fact that Eq. (29) suggests the possibility that the moment
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becomes independent of @2 when #=4—1. In this sense we pay a special interest to
the case §=1. In this case (Model B with §=1) the behaviour of the moment (30),
(31) may be consistent with the prediction of QCD with the singlet operator contribu-
tions. The pattern (32) is exactly the same as the prediction of the NSL with the ano-

malous dimension
r(n)=an, (33)

In the language of the field thcory, the constancy of the zeroth moment of the structure
function means that the structure function is completely dominated by the energy-
momentum tensor and its higher rank operators, According to the correspondence
argument, therefore, in Model B with 6=1 resonances may build up only the t-channel
singlet or the sea-quark component of the structure function. This possibility seems
somewhat different from the conventional understanding of the correlation between
resonances and valence-quarks. From our examples, however, it becomes clear that the
asymptotic dipole-like behaviour of the resonance form factor does not necessarily lead
to the expected resonance-valence-quark relation.

Finally we give some arguments on the valence-quark contribution in this model.
Consider the case where all resonances have the same dipole-like form factors (15b) with
d=1. The valence-quark contribution is most easily extracted out by taking the dif-
ference of the structure function between proton and neutron targets. Let us assume,
for simplicity, that there exist two towers of resonances with masses M7 and M ;2= M3+ «2,
whose sum and difference contribute to the structure functions of the sum and difference
of proton and neutron, respectively. Then the sum will build up the sea-quark contri-
bution, Eq. (29), with §=1, and the difference will give the moment

MY 2y £2 [ d . awon- _d(OV) —n
Fn, @) = ——55 [ T dr-Fta@ 1 (14 2)-ar-n)
=r2Q-2(d (Q2) ) (n+2), (34)

This seems to be satisfactory as the valence-quark contribution. The more interesting
result in the above discussion is the fact that by slightly improving the treatment of the
resonances there appears in fact the factor #-+1 which changes the original I'-factor in
Eq. (29) I'(#n+1) to I'(#+2). Therefore the above result is quite encouraging, at least
to expect some mechanisms which may change the original I'-factors in Eqgs. (22), (29).

C. Relation between the Resonance and the Valence- or Sea-Quark Contribution,

In the previous subsection B, we have briefly mentioned the possibility that in Model
A (Model B) the moment M,(#, @%) becomes independent of @2 when n=~1 (n=0)
and therefore the resonances can build up only the valence- (sea-) quark contribution
to the structure function, To be precise, however, in Model A the factor I'(z+1) ap-
pearing in Eq. (22) has a pole at #=—1 and this may invalidate the above-mentioned
@?-independence of the moment at #=—1. The same problem occurs in Model B
because of the factor I'(n) in Eq. (29) with §=1.

The above problem concerning the pole at #=—1 {(n=0) might probably the ficti-



H. Nakkagawa: Correspondence Arguments between Resonance and Parton Pictures 9

cios one and it could be due to our oversimplified treatment of the contributions from
various resonances to the structure function. In fact, as was discussed in B-2, by con-
sidering the contribution from the difference of two series of resonances, the factor
1#+1 really emerges which correctly cancels the pole at #=—1. Therefore it seems
to be reasonable to expect, when we know the details of the various resonance-contribu-
tions, the poles coming from the I'-factors may disappear. We take this possibility and
investigate the consequences.

Then in Model A resonances may build up only the valence-quark contribution. We
here note that it is the non-exotic resonance whose form factor is known to behave roughly
as dipole, Eq. (15a). So the above correspondence may be refined as the correlation
between the non-exotic resonances and the valence-quarks. In Model B, resonances
may build up the sea-quark contribution and also it may be possible to construct the
valence-quark one. Note, however, in the preceeding discussions it is implicitely as-
sumed that all resonances have asymptotically the same @2%-behaviour, namely, d(@?) is
nearly equal to 4 at moderate values of &2 in Egs. (15).

There is also another interesting possibility. As can be easily seen by Eqs. (19a, b),
both models A and B satisfy the Drell-Yan-West relation.?®) This fact and the sharp
decrease of the sea-quark distribution near x=1 compared to the valence-quark one
suggest that there exist two types of resonances whose form factor behave differently
as @2—>oo. In fact, recently there have been several theoretical discussions and also some
experiemental evidences of the exotic resonances.®)®) If these exotic resonances are
in fact hadronic bound states and correspond to the configuration qqqqd or six quarks,
then these form factors should behave roughly as (@2)* or (@2)° by the quark counting
rule. This behaviour of the form factor gives roughly the consistent behaviour of the
sea-quark distribution near x=1"*' If we take the above seriously, then the follow-
ing seems to be quite interesting. The ordinary non-exotic resonances have the form
factor Eq. (15a) (d(Q?) =4 at @*~2—4 GeV?) and build up the valence-quark cont-
ribution, whereas the exotic resonances have the form factor Eq. (15b) (d(@%) =8 or 10

at @*=2—4 GeV?) and they build up the sea-quark component.

IV. Structure Function at Large Q°

‘We have studied the properties of the moment of the structure function in the previous
section. Here we consider the asymptotic description of the structure function itself
in the present resonance saturation picture. Our results presented in this section are
all confined to the large @2 region (Q@2>m?).

In Model A, we have obtained the moments, Eq. (19a),

®) The sea-quark distribution behaves near x=1 as
F§(x, Q) ~1—-x)", p’'=6 at Q=2—-4 GeV?,
which means d(Q%) in Eq. (15b) is roughly larger than 7 at the same range of Q2. See,
for example, Ref. 12.



10 Memoirs of Nara University, No. 9

M;(n,Q@)~B(n+1,4d(Q%))= I :dxxn (1—x)d@ -1, (36)

which indicates the following form for the asymptotic structure function,

F45(x, sz);:ogl— x)d@H -1 (G1)]
where 1=0"1=Q%?/2myv. As was noted in sections III B), C), this structure func-
tion may be understood as the valence-quark component. On account of this point we
must take notice of the fact that the distribution, Eq. (37), does not show a decreasing
trend as ¥—0, contrary to the usual assumption made for the valence-quark distribu-
tions. ‘This behaviour that F45(x, @?) does not vanish at x=0 is in fact the origin of
the divergence of the moment M,(n, @%) at #=—1 and, therefore, if we expect some
mechanism which may cancel this divergence, as was discussed in Section III, then it
may not be unexpected that the same mechanism will modify the structure function
{37) so as to make it vanish at x=0 with some additional factors like x7 (0<n<1).
In this respect, we recall the parametrization of the valence-quark distribution by Buras
and Gaemers!?

Fy (£, @2) ~x0@ (1—£)8@-1, 7,80, (38)
with

7(@%)—0, §(Q@%)—o0 as @%—co, (39)
Here we just mention that our result (37) may correspond to the asymptotic form of
(38) in the limit of large @2 where 7(Q?) tends to zero. In addition to the possibility
that a detailed knowledge of resonances may enable us to modify the behaviour of F#¢
near x==0), there is, on the other hand, the possibility that the resonances may only cor-
rectly build up the structure function at rather large values of x (say, x=1/3), while
in the small £ regions they may not reproduce the correct structure function. The
latter possibility, however, seems to contradict the usual Resonance-Regge duality be-
cause we usualy believe that at small x {(or large w) the structure function may be well
described by Regge poles. Qur present result, at least, suggests that some examinations
of the conventional assumption of the valence-quark distributions should be made,
especially in the limit of large @2.

In Model B (6=1), we obtain

My(n, Q) ~B(n, (@) = [ drwt1-n)d@ -, (40)
or
F43(x, ng;\,x—l (1—x)d@H-1, 1)

This structure function may correspond to the sea-quark component, as was noted in
section II1 B), C). This distribution {(41) diverges as x~! as x goes to zero, which again
seems to contradict the ordinary assumption for the sea-quark distribution. The be-
haviour 271, in fact, might be too singular and cause the divergence of the zeroth moment
of F#5. This is completely analogous to the fact that the nonvanishing of the asymptotic
structure function (37) at x=0 causes the divergence of the moment at #=-—1. There-

fore, as was mentioned above, in this case also we may expect that the mechanism which
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cancels the divergence will modify the structure function with some additional factor
like 7' (5'>0). 'The recent analysis based on QCD in fact shows the behaviour
F3(x, @) ~xn@-1(1-2)8@ -1, o, £'>0, (42)
with
7(@%) =0, §{Q%) —>co as @?—>oo, (43)
Note that this distribution (42) again coincides with our asymptotic distribution F4$2,
(41), in the limit of @?—co.

Remembering that the present description of the scaling violation based on the re-
sonance picture is in fact an asymptotic one, we may say that the resonance picture can
describe the essential features of the patterns of scaling violation, and can also repro-
duce the basic requirement of the parton picture, such as the conservation of the number
of the valence-quarks or of the energy-momentum tensor. 'This lends strong support
to the correspondence hypothesis utilized throughout this paper. Therefore, we may
expect a successful unification of the resonance picture with QCD or with the new scal-
ing law.

We add one more comment about the form of the structure function. In comparing
Eqgs. (15a) and (15b) with Eqgs. (37) and (41), respectively, we find that our result re-~
produce the Drell-Yan-West relation®®} in a generalized form. This may be a common

feature of the resonance model.

V. Proton Form Factor Obtained from Correspondence

Arguments between Resonance and Parton Pictures

It is known that the electromagnetic form factor of the proton deviates from the famous
dipole form at large @2.28) This deviation may be related to the scaling violation, and the
discussions given in the previous sections have been done on the basis of this relation.
For example, De Rujula, and Gross and Treiman®? related the proton magnetic form
factor to the structure function in QCD by assuming the Bloom-Gilman duality.?
"There resuting form factors showed consistent large-@2 behaviour with the data. Further-
more, the expression of the proton form factor obtained in this manner also agreed with
other calculations®™ in QCD without the use of BG duality.

In the previous sections we have studied the consequences of the correspondence
requirement between the resonance and the parton-field-theory pictures. In that con-
text, if we can find expressions of resonance form factors which satisfy this requirement,
we shall call such form factors as ‘solutions’ of the correspondence requirement. In
this sense, QCD- and NSL-inspired form factors are the possible candidates for the
‘solutions’. Here we study whether such form factors could describe the experimental
data at large-@2 correctly.

By using the “form factor scaling law” G, (@%) = ¢#G;(@?) (# is the magnetic moment
of the proten), the elastic electron-proton scattering cross section in the one-photon

approximation is expressed by
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(). (5D VR vamean(3)] @

where (do/d2),, denotes the cross section for scattering from a point proton, @ is the
scattering angle in the Lab-frame and r=@Q?2?/4m? (m is the proton mass).

The form of the proton magnetic form factor considered in the present analysis is the
one given by Eq. {153), i.e.,

G, (@) =p/(1+ Q% dm?) 4@/ 45)
where d(@Q? are given by Egs. (20) and (26),
A(Q*/Qpe (46a)
4@ ={4G-1n[-i%§—g;§+g]+p+1. (46b)
In Eq. (46b) we set p=3 and G is given by
G=4/(33-2f), “n

where f is the number of quark-flavour, @, is a reference momentum and 4, a« and A are
paramenters to be determined by fitting the data. Eq. {46a) corresponds to NSL and
Eq. (46b) to QCD-type solution,
In the actual analysis we examine the ratio @,/G, where G, is the dipole formula
G,(@) =p/(1+Q%/0.710)% (48)
The above ratio is normalized to 1 at @*=Q% and we take 9%=3.759 GeV2

Figs. 1a and 1b show the results of NSL, Eq. (46a). We fitted nine experimental
points, ranging from @2=5.075 GeV? to 25.03 GeV2 Fig. 1a shows the best fit, while
Fig. 1b is for the two cases with the two specific values of 2 which will be discussed later.
The values of 2 and a with the corresponding 32 are given in Table 1.

Figs. 2a and 2b show the fit for the QCD-type solution, Eq. (46b). Fig. 2a shows
the result of the 4-flavour model (f =4 in Eq. (48)), and Fig. 2b the 6-flavour model
(f=6). The values of 4, A2, and ¥* are given in Table 2.

Discussions on several points are in order.

i) We pointed out in the preceding sections that NSL is able to exactly satisfy the
correspondence requirement. As can be seen in Fig. 1a, 1b and Table 1, NSL also
gives excellent fits to the experimental proton form factor, and we take this as another
strong support for NSL.

ii) TFig. 1b shows the results of the one-paramenter («) fit corresponding to two in-
put values of 2. The case of 2=1 corresponds to the original expression (Eq. 15a),
and 2=0.710/0.880 to the case of im?=0.710, the “dipole-mass’® used in Eq. (48).
The best fit value of i is quite close to 1.

iii) The parameter a in Eq. (46a) essentially measure the magnitude of the anomalous
dimension of the spin-n operator in NSL

r(n)y=a(n+2). 49)
This parameter was estimated from the scaling violation in lepton-nucleon scattering,18-28)

The present result with 1=0,710/0.880 is roughly consistent with the value obtained by
Kawaguchi and Nakkagawa,®®) and that the results of the best fit and i=1 give values
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Fig. 1la The best fit result in NSL. Data are taken from Ref. 1.
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Fig. 1b Results in NSL corresponding to two input values of the

parameter 2.

Solid line; 2=1, dashed line: 1=0,710/0.880.

i @ %2 (9 points)
Best Fit 0. 961 0. 740 x 10-2 5. 238
1.0 0.245x 102 5. 258
4 input
0.710 R
0,880 0.282x10 5.598

Table 1 'The values of the paramenters and %* in NSL,
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Fig. 2a Results in the four-flavour model of the QCD type solution,
Solid line: best fit, dashed line: A42=0.2 GeV?,

GulQ')
12 GolQ)

Fig 2b Q[GeV?]
0. 4 L 1 1 L 1 1 1
0 10 20 30 40 50
Fig. 2b Results in the six-flavour model of the QCD type solution.
Solid line: best fit, dashed line: A2=0.2 GeV2.
A2 Fi %% (9 points)
Best Fit 0.154x 10 0. 830 5.273
f=4
A% input 0.2 1,164 6. 992
Best Fit 0.411x107? 0. 818 5, 285
f=6
A% input 0.2 1,302 9. 007

Table 2 ‘The values of the paramenters and »? in the QCD type.
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smaller than those obtained from scaling violation.®

iv) The QCD-type solution, Eq. (46b), also gives good fit to the data. An interesting
feature of this model is the following: if we use 42=0.2 GeV? suggested by the analysis
of the scaling violation,* the theoretical curve (with 1 determined by fitting data for
@2>5.075 GeV?) seems to fit the small @2 data down to @2=1.0 GeV? as well, especially
in the four-flavour model. This choice of the parameter A2, however, gives a little
faster decrease than the data in large @2 region.

v) The best values of A% in the QCD-type solution are significantly smaller than 0.2
GeV®: As was mentioned earlier this may due to the fact that QCD (in the leading
logarithmic approximation) does not exactly satisfy the correspondence requirement
based on the Bloom-Gilman duality.

vi) Finally we should mention that both ‘solutions of the correspondence requirement’
(NSL and QCD-type) give excellent fits to the experimental proton form factor, despite
the rather simple expressions. Furthermore, we have already known that both QCD
and NSL can also describe the scaling violation. The remaining problems are a) whether
these ‘solutions’ can give simultanious description of both the scaling violation and the
form factor with the same values of parameters, and b) how to descriminate various
‘solutions’. Partly because of the experimental uncertainty and partly because of the

theoretical difficulty, we cannot at present answer these questions.

V1. Summary and Discussions

Throughout this paper we stressed the importance and the usefulness of the cor-
respondence arguments between the resonance and the parton-field-theory pitures. In
fact we have studied the behaviour of the moment sum rules and obtained the general
conclusion that the conventional field theories with the ultra-violet fixed points should
be ruled out as a likely candidate for the strong interactions. This conclusion may be
important because, up to now, experimental results cannot conclusively decide which type
of field theory is to be favoured.

More generaly the resonance picture seems to favour those theories predicting an
indefinitely rising (as n tends to infinity) anomalous dimension 7 (%) of the spin-n ope-
rator. Up to now we know only two theories with such 7(n): QCD and the new scaling
law. We have noted that QCD may be compatible with the resonance picture and may
be able to unify the resonance and the parton pictures. This conclusion partly confirms
and gives support to the qualitative *“‘explanation” of the Bloom-Gilman “local” duality
by the asymptotic freedom. 'The correspondence between the resonance and QCD is,

however, rather qualitative, namely, the predictions from QCD are not exactly the same

*) Somewhat larger values obtained in Refs. 16 and 28 are probably due to the fact that in
those papers a) the contributions from valence and sea quarks were not separated and b)
the data with small @2 (down to @*=0.5 GeV? were included.
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as the asymptotic description based on the resonance picture,*)

We have found that NSL is also quite satisfactory: the resonance model with d (@%)

behaving as

d (@)~ (@)=
gives exactly the same pattern of scaling violation as does NSL with anomalous dimension
r(m),

r(n)=a(n+1), or, an,
depending on the nonsinglet or the singlet operators. In this case the correspondence
may be complete.

Analysis of the scaling violation based on NSL has already been done and it fits the
experimental data very well, We know, however, very little about the fundamental basis
of NSL. We know only the followings: a) it corresponds to the theory which predicts
7 (n) to be proportinal to #, and b) it may have its origin from the successive appearance
of the new mass scals. The point b) makes us imagine the resemblance between the
resonance picture and the origin of NSL. As for a), it should be noted that the linear
increase of y(#) with 2 is the extreme case, allowed by the Nachtmann’s positivity con-
ditions,®) opposite to the exact scaling.

Finally we give some discussions about the parametrization of the structure function
of Ref. 11, about which we have briefly mentioned in section IV (see, Egs. (38), (39),
(42) and (43)). The results of Ref. 11 and ours agree for @2->co as the difference is in
the appearance of the exponent »(@?) which goes to zero as @?-—»co. As was discussed
earlier, the factor, x7 may be expected to come from the same mechanism which cancels
the divergence of the moment at #=—1 {or #=0). We have, however, not succeeded
in constructing a concrete example of such a mechanism which cancels the divergence
and at the same time produces such a modification of the structure function. More
careful and detailed study on this point should be made.

Meanwhile, it seems worthwhile to study the consequence of the additional factor
like 2792 in the resonance model. If we set every complication aside, then by re-
versing the present procedures (for simplicity, we consider only the valence-quark para-

metrization (38)) we arrive at a modified Model A, where G,(@?) is now replaced by

]q(@‘)/z

6@ =[ ) " i+ n-sen, 2=0v/m, 50

This is essentially the Model B with negative value of d. In order to guarantee the
@?-independence of the moment M,(#n, @%) at #=—1, G,(@?) should have the extra
factor 1/B(n(Q%), d(@%)), i.e.,
G (0D ~ 1 ra ]v(@')/z
@Y= B0, 7@ U142

This form factor has the same asymptotic behaviour as the original one Eq, (15), and

(14 2] -4@dr, (51)

is similar to the one used by Tajima.? We are not sure whether the form factor (51)

*)  Remember, however, Eq. (25) and the related discussion in section III B.
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gives a satisfactory description of the experimental data or not.® On the basis of the

correspondence hypothesis, however, it is certainly an interesting parametrization of

the resonance form factors.

In the above considerations we have put all the effects from the additional factor
2727 into the form of G,(@%). There is of cause the possibility of identifying (part of)
the effects otherwise, but such a consideration will force us to go into the details of the

resonances, and this is beyond the scope of our present investigation.
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