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                  ABSTRACT 
   In this paper we apply . the renormalization-group (RG) inspired resummation 

method to the one-loop effective potential at finite temperature evaluated in the 
massive scalar 04 model renormalized at zero-temperature, and study whether our 
resummation procedure a la RG successfully resum the dominant correction terms 
apperaed in the perturbative caluculation in the T = 0 renormalization scheme or not. 
Our findings are i) that if we start from the theory renormalized at T = 0, then the 
condition that may perform the resummation of dominant corrction terms actually 

generates new large terms of the same order of magnitude, thus the resummation 
program totally breakes down, indicating ii) that the perturbative calculation with 
the theory renormalized at T = 0 does not fit for the starting basis for carrying 
out the resummation of temperature-dependent large corrction terms. In the theory 

renormalized at an arbitrary finite temperature the resummation program successfully 
works, carrying out the full resummation of dominant correction terms. Result in the 
theory renormalized .at finite-temperature shows, with the one-loop knowledge alone, 
the second order nature of the phase transition in the model.

                  I. Introduction  and summary 

   To understand the phenomena that occur in a hot and/or dense environment we 

must carry out the investigation with thermal field theories (field theories at finite tem-

perature/density, hereafter we call them as TFT's). It is well known that, if the theory 
is renormalizable, the renormalization of the TFT can be accomplished by the renormal-

ization of the vacuum version of the field theory, namely that there do not appear any 

new kind of ultraviolet divergences which depend on the temperature/densityl). With 

this fact many of works invetigating the phenomena that occur in a hot environment 

have been carried out with TFT's renormalized at zero temperature.

Received September 30, 1998.



2 Memoirs of Nara University No.27

   We now know that, because of the appearence of an additional quantity with large 

mass-scale, i.e., the temperature T of the  environment, the perturbation theory of the 

TFT cannot be simply organized by the naive perturbative expansion in terms of the 

coupling g of the theory. In fact there appear large "perturbative" correction-terms 

having structures (gT)2n at the n-th order, which spoils the naive pertubative expan-

sion. Thus in the TFT, systematic resummation, such as the hard-thermal-loop (HTL) 

resummation2>, of such large "perturbative" correction-terms is inevitable to get mean-

ingful results. The perturbation theory of the TFT must be the perturbation theory of 

the effective theory constructed after the systematic resummation. The HTL-resummed 

effective theory may have some "double-counting" troubles because of the introduction 

of the "separating" scale. Thus we should try further to exploit another resummation 

procedures that enable us to construct the perturbation theory of the resulting effective 

theory more straightforwardly. 

   Recently we have proposed a new systematic resummation procedure inspired by 

the renormalization-group (RG) improvement3)'4). This procedure is nothing but the 

RG improvement of the theory, and the perturbative calculation after the resummation, 

namely after the RG improvement, has been well studied, showing there are any trouble 

of "double-counting" of the diagrams. Thus it may be interesting to ask the following 

question; In which calculational scheme the new resummation procedure can give the 
effective theory that can develop efficient perturbative calculations? 

   In this paper we present the results of application of the RG-inspired resummation 

to the one-loop calculation of the effective potential (EP) at finite temperature in the 

massive scalar 04 model renormalized at zero-temperature. Perturbative evaluation of 

the EP, especially at finite temperature, in terms of the loop-wise expansion, however, 

suffers from various troubles, e.g., unreliability of the perturbation theory5) and the 

strong renormalization-scheme (RS) dependence6 . All these troubles are due to the 

emergence of large perturbative correction terms (large-log terms in the vacuum theory, 

and large-T (T2) terms in addition in the thermal theory) which depend explicitly on 

the RS. Thus no reliable prediction can be made without solving the problem of RS-

dependence. The resummation scheme a la RG-irprovement3),4) is originally proposed 

in order to solve this problem of RS-dependence. 

   With the effective potential we can get the information on the nature of the phase 

transition of the theory, which can be a highly non-perturbative phenomenon. Thus with 

the present study we can see whether our resummation procedure applied to the theory 

renormalized at zero-temperature successfully resum the dominant correction-terms or 

not. Same analyses carried out in the massive scalar 04 model renormalized at finite 

temperatures are given elsewhere7)'8 . 

   Results of the present analysis can be summarized as follows; 

   i) In our RG-inspired resummation scheme there is a clear distinction between the-
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ories renormalized at zero-temperature and at finite temperatures. If we start from the 
theory renormalized at zero-temperature, then the condition that may perform the re- 
summation of dominant large correction-terms of (g2T2)72actually generates new large 
terms of the same order of magnitude, thus the resummation scheme totally breaks 
down. In the theory renormalized at an arbitrary finite temperature To then the re-
summation program succseccfully works, carrying out the full resummation of terms of 
order (g2T2)1 and of order (g2T)'. In the theory renormalized at the temperature of the 
emvironment T the resummation program also works, giving almost the same result as 

at an arbitrary finite temperature To. In this sense our resummation procedure gives a 
stable conclusion when applied to the theory renormalized at nonzero finite temperature 
To�O. 

   ii) The RG-improvement of the result in the T = 0 renormalization at the one-loop 
level predicts the first order nature of the phase transition, which cannnot be trusted 
because of the break-down of the resummation program explained above. 

   iii) The RG-improvement of the one-loop effective potential of the model renormal-
ized at nonzero finite temperatures To � 0 predicts the explicit second order nature of 
the temperature-dependent phase transition. This result is quite stable and agrees with 
those in the non-perturbative analyses. We can conclude that our resummation scheme 
a la RG-improvement can be a powerful resummation method when applied to theories 
renormalized at nonzero finite temperature To � 0.

          II. Resummation procedure a la RG improvement 

   Let us focus on the massive self-coupled scalar 04 model at finite temperature, 

£= 1 2__1m202 _1A 4—h'm4 (m2 <0 A - 2 (1) 

consider the case where all the calculations are performed by employing the mass- 

independent RS, and the theory is renormalized at an arbitrary mass-scale µ, but at 

the zero renormalization-temperature, To = 0. Then the key idea to resolve the RS-

ambiguity is to use the fact that the exact EP satisfies a renormalization group equation 

(RGE), 

       (4+4_m2oa02_c+h)vo,2() 
whose solution is

       V (0, A, m2, h, T; p,2,) = V ((t), A(t), 'm2 (t), h(t), T; = p2 e t l , (3) 

where the barred quantities cb, A etc. are running parameters whose responces to the 

change of t are determined by the coefficient functions of the RGE, -y, ,(3 etc. with the 

boundary condition that the barred quantities reduce to the unbarred parameters at
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t  = 0. Thus, the EP is completely determined once its function form is known at certain 

value of t. The problem of resolving the RS-dependence of the EP now reduces the one 

how can we determine, with the limited knowledge of the L-loop calculation, the function 

form of the EP. 
   Let us notice here that in the scalar 04 model (at least in the 0(N) symmetric 

model in N oo) the dominant large corrections appear as a power function of the effe 

ctive variable T

T = AA ,(4) 

      2_11            M01=22 _-------M2+ (one-loop counter term), 

which is nothing but the renormalized one-loop self-energy correction, having the high 

temperature behavior r N A(T/M)2, where M2 = m2 4_ Then we can see3),4) 

that the EP can be expressed in the power-series expansion in T; 

M4 °° _Ahm4 V —---Afz= .4 ,(5) 
f=0M 

where 

002 
Fe (T)-v(L)TL—~F0 (r) =voL)TL,,voL) = 0 for L3 (6) 

L=fL=0 

Then we can easily find the solution to the above posed problem; at T = 0, the " fth-to-

leading T" function Fe is given solely in terms of the £-loop level potential, Fe (T = 0) _ 

v(L—t). To be noted is that in the 0(N) symmetric model in the large-N limit v~L—~)is 
a pure constant being independent of any variables in the theory. So if we caluculated 

the EP to the L-loop level, then at T = 0 it already gives the function form "exact" 

up to "Lth-to-leading T" rder. With the L-loop potntial at hand, the EP satisfying the 

RGE can be given by 

V = M4 (t) (t) HT) (t) + gt)5e,0] 
                   f=0T(t)=0 

VL (cb(t),)(t),rn2 (t),h(t),T; 2e2t) ~T(t)=o(7) 

where the barred quantities should be evaluated at such a t satisfying t(t) = 0.

   III. Phase structure of the simple massive scalar q4 model at T# 0 

   Now we explicitly apply the RG improvement procedure explained above to the finite 
temperature massive scalar 04 model renormalized at zero temperature, and study the



Nakkagawa and Yokota: Calculating the  Finite-Temperature  ..  . 5

phase structure. The perturbatively calculated one-loop EP in the T = 0 renormalization 

scheme is 

V1 = -1m2021~4+h'm4 2~4!~ 

      M4b T4 T2 T2T2            + 2ALT +4 + 72 M4 L° M227r2 M2L 1 M2 (8) 
where 

        b M2 T2T2 T=A2(ln- 1+ 2~r2M2L1(M2 (9) 
                      00   L(-j.1=k2 dk Inex-Vk22+aL= a  L.0ln[1 p{~~ ~12201(10) 

a,°1 -aasa2 

At the one-loop level RGE coefficient functions are -y = 0, ,Q = 3b\2, 0 = -bA, Oh = 

b/2 - 2bA, where b = 1/167r2. Thus the RG improvement can be performed analytically, 

obtaining the improved EP as 

         Vl 1m22+-1~~4+h'm4         (t)=~4~~ 

         M4bT4TZT2TZ  
              +2—4+ ~2 M4L° M2-27r2 M2L1 M2(11) 

                 1-22 1~4 -m4 T2M2_TM3  + ' •••(12) 2~+4!~2A+~48 487r 

where 
          2=m21)2~(t)=~2t= ~r22        M(t)+ 

1 - 3abt'm()1 - 3Abt1/3(13) 

and all the barred quantities should be evaluated at such a t satisfying the RS-fixing 
condition -r(t)  = 0, which gives the mass gap equation9) 

M2 = m2 + f (M2 )M2 - f (M2 )2/3mm2(14) 

f (M2) = 1 - 3\bt(15) 

1 - 3A T2                   - -  T- + b{ln(471T)E+...(16)22 87rM 
  The stationary condition dV1 / dq = 0 gives 

dVl212 
                       d.(/)            = M-3AO=0.(17) 

  With the RG improved formula (11)r (17) in hand we can study the phase structure 
of the model.



6 Memoirs of Nara University No.27

 02/Im2)
(a)

 M2/Im21

0 / I m 2 1
(b)

Figure 1:  02-M2 relations: (a) from the High temperature expression of the mass gap 
equation, I'M  = 0, Eqs. (14) N (16) , (b) from the "exact" mass gap equation, f(t) = 0, 
Egs.(14)r'(15).
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Figure 2: RG improved effective potentials at three temperatures: (a)  t  = 20.0, (b) 
T2 = 23.9, and (c) T3 = 25.0. V - Vi(0) — min{Vl(0 = 0)}, T - T/1mi, and the 
coupling is set to A = 1/20.

III-a. High temperature expansion analysis 

   First let us see the result in the high temperature expansion, Eq. (12) . In this case the 

mass gap equation, or the RS-fixing condition, Eqs. (14) and (16), gives at sufficiently 

high temperature the 02-M2 relation shown in Fig. 1(a), indicating the exsistence of two 

phases I and II. The phase I is the symmetric phase and the phase II is the broken phase, 
see Fig.2. Also we can see is that at low temperature below T1 the broken phase realizes 

the true vacuum, but that as the temperature becomes higher the symmetric and the 

broken phases eventually becomes mixed up thus showing the bump structure in the 

effective potential, and finally that at high temperature above T3 the symmetric phase 

realizes the true vacuum. Phase transition in this case is strongly the first order. The 

broken phase II is the ordinary phase being related to the tree EP, while the symmetric 

phase I is generated by the resummation effect of the large-T (T2) correction terms. 
   It is worth noticing that in both phases I and II the running parameters A and rn2 

may show some peculiar behaviors, e.g., in the small region they blow up, and in the
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phase I a becomes negative. This can be seen with the help of Egs413) and (15), by 
noticing the fact that c can be expressed as a function of M2 as 

                 1 3 [2(M2f1/3+( 
                                        (18) A 

where f = f (M2 ), Eq. (15) . Thus can become small when f becomes small (in the 

phase II) or when /l-//-2 f1/3 + (m2 becomes small (in the phase I). However, these are 
not the real trouble because if we correctly define the effective coupling and the effective 
mass-squared by 

d4V1 2d2V1         '
eff—d 4meff—d02(19) 

then Ae f f and m11 show moderate behavior to be consistent with the perturbative 
treatment, except in the very small q region where Ae f f becomes negative. For example, 
in the phase II the behavior of the effective coupling ae f f at small 0, or at small f, can 
be calculated as 

M2 3M2 4       Aef f =[--8(A-02 + 57(A-02+.• . (20) 
              (M2 3105 M2/1/3  

              

im2l)-1 +16 im21 + , 
M2A-4--2f 1 /3M2 f1/3 M2 f1/3 

       2—2m2+M21/321m21 1m21---------+ 

showing that Ae f f is small and positive except in the very small (or, small f) region. 
This result may have a relation with the small 0 problem pointed out by Amelino-
Camelial°)

III-b. Full analysis with RG improved V1 and 'r 

   The "exact" mass gap equation f(t) = 0 gives the 02-M2 relation shown in Fig.1(b), 

indicating the exsistence of three phases: two of them, i.e., phases I and II are those 

already appeared in the high temperature expansion analysis, whereas the third phase 

III is totally new. In this phase the effective coupling .e f f may become strong and 

the effective mass-squared also becomes very heavy, indicating this phase to be almost 

temperature independent super massive strong coupling phase. It is difficult to make 

full analyses of other properties of the third. phase III because of its super strong and 

super massive nature.
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   IV. Can we rely on the results in the T  = 0 renormalization scheme? 

   Now let us study whether we can trust the results of the RG-inspired resummation 

method applied to the one-loop EP caluculated in the T = 0 renormalization scheme. 

Almost all of the existing analyses in the T = 0 renormalization scheme predict the first 

order nature of the phase transition, thus in this sense our results in the previous section 

can not be accused of this point. 

   The point to be examined is whether the resummation of large correction terms 

are consistenly carried out or not. Thus we should study the condition that may carry 

out the resummation, i.e., the RS-fixing condition f(t) = 0, or the mass-gap equation 

Eqs. (14) N (16) , giving 

                 0=InM2—1.T2-
                                               T2 2  

                           + -2b 7r2M2L1 (M2)(22) 
47T.472 T2:4irT 2 I

n  + 3 .2— M(23) 
                              tt 

Remembering M2 N (1/24))T2, then Eq. (23) determines the RS-parameter µ as 

                 /i N 47rT exp(167r/a),(24) 

showing that the remaining (un-resummed) .0(A ln(T/µ)) terms are actually large enough 

to be comparable with the 0(AT2/M2) contributions. This fact indicates the breakdown 

of the resummation method a la RG in the T = 0 renormalization with the use of RS-

fixing condition T(t) = 0, showing that the results in the previous chapter can not 

represent the result of correct resummation of the large correction terms, thus can not 

be trusted at all. 

   Such a trouble never happens in the finite temperature renormalizations , giving a 
stable results showing the second order nature of the phase transition7)'8 . It is worth 

mentioning that, in the large-N limit of the 0(N) symmetric model, after setting T(t) _ 

0 there appear no remaining (un-resummed) 0(\ ln T/µ) terms , see Eqs. (5) and (6), 
assuring the absence of the above trouble in the T = 0 renormalization.

                   V. Discussion and comments 

   In this paper we investigated the results of the application of the new resummation 
method inspired by the renormalization-group improvement to the one-loop effective 

potential in the massive scalar 04 model calculated in the T = 0 renormalization scheme. 

Our conclusion is that in this case the condition that may ensure the resummation of 

large temperature-dependent correction terms actually generates new large terms , thus 
the whole procedure of the resummation might get into trouble. Thus we can say that 

the perturbative calculation with the theory renormalized at T = 0 does not seem to fit
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for the starting basis for carrying out the resummation of temperature-dependent large 

correction terms, at least in the present resummation procedure a la RG-improvement. 

   Discussion of the results and several comments are in order. 

i) One of the reason why the problem discussed above arises may come from the 

fact that. in the simple massive 04 model the EP can not be expressed in the simple 

power-series expansion in r, Eqs.(5) and (6), but can actually be expressed as a double 

power-series expansion in the two effective variables T and c, i being nothing but the 
renormalized one-loop correction to the coupling, see Refs.7), 8). Thus, as was mentioned 

in the last sec. IV, in the 0(N) symmetric model in the large-N limit where the EP 

can be fully expressed in the simple power-series expansion in T, even with the problem 

pointed out in sec. IV, the resummation program works successfully. 

   The same analyses carried out in the finite-temperature renormalization schemes 

can show7") the following observations.• 

   ii) Starting the perturbative calculations with the theory renormalized at an arbi-

trary mass-scale p, and at an arbitrary temperature To, we can in principle fully resum 

terms of O(AT/µ) together with terms of O(A(T/4)2). The key idea is to fix the arbi-

trary RS-parameters so as to make both of one-loop radiative corrections to the mass 

as well as to the coupling vanish, thus absorbing completely those terms of O(A(T/µ)2) 

and of O(AT/µ). With the use of approximate solutions to the RGE's for the run-

ning mass-squared we can carry out the resummation program analytically, showing 

that the temperature-dependent transition between the symmetry-broken phase and 

the symmetry-restored phase proceeds through the second order phase transition. 

   iii) We can firstly renormalize the theory at the , temperature of the environment 

T. In this case O (A(T/ p,) 2)-term resummation, thus the so-called hard-thermal-loop 

resummation in this model, can be simply completed through the T-renormalization 

itself. With the lack of freedom we can set only one RS-fixing condition to absorb the 

large terms of O 7 T/1.c), thus only the partial resummation of these terms can be carried 

out. Resulting phase structure of the model is, however, essentially the same as that 

in the To-renormalization above. In this sense our resummation method seem to give 

stable results so long as the terms of 0(7T/µ) are systematically resummed. 

   Finally it is worth noticing that the renormalization-group analysis of the massive 

scalar 04 model T 0 has been done in great details by M. van Eijckll). In his work 

the importance of the finite-temperature renormalization is clearly shown. However, the 

resummation of large temperature-dependent correction-terms is not the main issue of 

his work, thus no idea is given on the effective resummation-procedure of such terms.
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