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ABSTRACT 

  Recently we have applied the newly proposed renormalization group (RG) im-

provement procedure of the finite temperature effective potential to the massive 04 
model, and have shown that i) the massive scalar 0 model has a rich three-phase 
structure at T 0, two of them are not seen in the ordinary perturbative analysis, 
and that ii) the 0(N) symmetric massive 4)4 model has a two-phase structure, one 
of them are not seen in the perturbative analysis. Both results indicate that the 
new RG improvement procedure is really an efficient procedure that can incorpolate 
the nonperturbative effect by resumming correctly the dominant large perturbative 
corrections through the RG technique. To reach the above observations, however, 
a bit tedious numerical analysis is unevitable, which is the cost to be paid. In this 

paper we present the details of the numerical analysis; where the trouble in numerical 
computation may arise, how it can be resolved, and what is the reliability of the nu-
merical computation. The last problem, i.e., reliability of the computation is studied 
by comparing the results of numerical computation with that of the high temperature 
expansion of the full formula. We find that the method we have made use of in the 
numerical computation is quite successful, giving even in the most troublesome cases 
the three significant figures agreement with the high temperature expansion. Results 
on the phase structure of the 0(N) symmetric massive 0 model obtained by the 
numerical analysis are briefly given.

                  I. Introduction and summary 

   To investigate the phase structure of relativistic field theories both at zero and finite 

temperatures an powerful and convenient tool is the effective potential (EP). The trouble 

inherent in the analytic evaluation of the EP through the perturbative calculation is the 

renormalization-scheme (RS) dependence' of the results, without solving this problem 

no reliable physical prediction can be made. 

   Recently simple but efficient procedures for resumming dominant large perturbative
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corrections by using the renormalization group (RG) technique are proposed2)'3), and 
have been applied to the massive 04 mode144) to investigate the phase structure of the 
model. These analyses have shown that i) the massive scalar 04 model at T 0 has 
a three-phase structure, two among the three of the phases being not seen in the ordi-
nary perturbative analysis thus having a nonperturbative origin, and that ii) the 0(N) 
symmetric version of the model in the large-N limit has a two-phase structure being 
different from the simple model, one of the phases being again not seen in the pertur-
bative analysis. These results indicate that the proposed RG improvement procedures 
are really efficent in resumming correctly the dominant large perturbative corrections, 
incorpolating properly the nonperturbative effect as well as resolving the RS dependence 

problem. 
   To reach the above observations it is necessary to carry out the numerical evaluation 
together with the analytic analysis of the RG improved full formulas of the EP. The nu-
merical anlysis is a little bit tedious because of the appearence of complex non-elementary 
functions with integral expressions, whose integrands show superficial divergences. To 
get the result we must solve this problem and give a rigorous estimate on the reliability 
of the performed numerical computation. 

   In this paper we will present details of the numerical analysis of the RG improved 
full formulas _ of the EP, namely, the procedure of numerical integration to carry out 
the numerical .analysis with sufficient accuracy, by focussing on the following questions: 
where the trouble in numerical computation may arise, how it can be overcome, and 
what is the reliability of the present numerical analysis. Starting from the one-loop 
calculation of the EP, there appear two troublesome functions of integral expression in 
the RG improved formula of the EP. One of them has an integrand that may develop 
logarithmic divergences, causing little troubles. The other function has an integrand 
that may develop power divergences, and the function itself is defined as the principal 

part integral of such divergent integrand. Surely ' this type of principal part integration 
causes no trouble if performed analytically, but in the numerical computation it actually 
causes serious trouble and must be handled carefully. 

   Main conclusion of the present paper is that the method we have made use of in the 
numerical anlysis, especially the method of principal part integration, is found to be quite 
successful, giving in the most troublesome cases the three significant figures reliability. 
Thus we can rely on the result based on the numerical analysis. Several results on the 
phase structure of 0(N) symmetric massive 04 model at T '0 are presented as an 
illustration. 
   This paper is organized as follows. In chapter H all the formulas and expressions 
that appear in the present analysis of the EP of 0(N) symmetric massive 04 model at 
T 0 are properly defined and given. The method and procedure of the numerical 
computation and analysis are explained in chapter III. The estimate on the reliability
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of the performed numerical computation is also presented in chapter III, where some 

comparisons of the result based on the numerical computation with that based on the 

high temperature expansion analysis are given. Last chapter IV is devoted to discussion 

and comments.

 II. Effective potential of the 0(N) symmetric massive model at T 0 
   In this paper we confine our interest in the one-loop evaluation of the effective 

potential (EP) of 0(N) symmetric massive 04 model at T # 0 in the large-N limit: 

z = 2(a0)2 —2m202 —8)42)2 Thm4(1) 

               ~z = oaoa a = 1, 2 ... N 

All the starting calculations are performed in the T = 0 renormalization scheme, where 
all the renormalization constants are the same as those of the vacuum theory. The 
one-loop calculation gives the EP as 

   0°) + 11(1)(2) 

                     4 

 V ~°~ =N2(3) 
    V(1)=NZ4aLT+a~-4 +72-m41-1°(M T2T2~2~ M2.L1\M/~J 

         +m4 (h — 2~1(4) 
where M2 - m2 + (1/2)A02, b = 1/167r2 and

T2            T=A {P-`InM2—Il +272 M2Li ()}~(5) 
Lo ( 21 = f ~ k2 dk ln[1— e3cp{—\/k2 + a2}J , (6) 

       \a / o 

         Li / 1 E._ 1 °° k2 dk  -------(7) 
                                                             a220Vk2-f-a2 expM2+a2} — 1 

To this order, the RG improvement can be carried out analytically, giving the RG 

improved EP as 

    NM4(t) [{ 4~--------M(t)~M-----t)) 2~1VI2(t)(M T2                        (t))}] 
       +th4(t) (h(t) -N  ) ,(8) 

                   2A(t) 

where 
              2 M2 (t)1-------~bA' A(t) 1~tbA' m4(t) (11(t) 2(t))—m4(h2A)' (9)
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and all the barred quantities must be evaluated at such a t satisfying 

       bM2T2 T2            ,r(t)  _A
2In 2 e2t—1+2.-2L1-2=0.(10)            tc27-MM 

In the present approximation, i.e., in the N oo limit of the model, the field c is free 
from renormalization, thus = 0. As for the details of the RG improvement procedure, 
see Refs.2)N5). It is worth noticing that the key condition of the RG improvement 

procedure, T(t) = 0, which chooses the RS so as to minimize the RS dependence, gives 
in fact the mass gap equation in the self-consistent improvement method6) . 

   To investigate the structure of the RG improved EP, we must carry out the numerical 
computation of the above formulas, especially of the function L1, Eq.(7), which needs a 
careful and tedious procedure for the principal part integration. 

   In the region where M2/T2 << 1, we can carry out the high temperature expansion 
which gives different results depending on the sign of a2 M2/T2: 

(i) a2 - M2 /T2 > 0
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The high temperature expansion greatly simplifies the numerical analysis, and the only 

problem in this case is the accuracy of the approximation.

              III. Procedure of the numerical analysis 

   In this chapter we explain in detail the procedure of numerical computation we have 

carried out. To get the good estimate on the reliability of numerical integration the use 

of carefully coded program written in the Fortran language might be preferable. For the 

present purpose, however, we find that the use of Mathematica is enough and suitable. 

The main reason is in the present case we have a good approximation method,  i.e., 

the high temperature expansion which is proved to represent the original full formula 

with high accuracy in an appropriate range of the parameter in the theory, thus we can 

compare both results in the region where the high temperature expansion is reliable in 

high accuracy level.

III-a. Where does the trouble in numerical computation arise? 

   As mentioned before, the only function that really causes trouble in the numerical 
computation is the function L1, Eq. (7) . As can be easily seen, however, even in L1 when 
the argument of the function a2=M2/T2is positive (namely, M2 > 0) the integrand 
of the integral expresssion is a smooth function, causing any trouble in the numerical 
integration. When the argument of the function a2 = /1-12/T2 becomes negative (namely, 
M2 < 0) the integrand develops a superficial power divergence, thus we must devide the 
integration range and carefully carry out the principal part integration (c2 - -a2): 

   11O° x2dx 1                                             (22)    L
1 a2 2x2 - c2 expf Vx2 - c2 - 1 

c2 001+w1-w---------y2dy1  

      2+PP+2--2------------------------- , (23)               1+,1—wo \~1 exp{c~y1}1 

where                1
+w1-E1+w 

       PP=lim+. (24) 
                    1-wE-+~1-w1+€ 

The function Lo has also in its integrand a superficial divergence of logarithmic nature. 

As is well known logarithmic divergence in the integrand causes any trouble in the 

numerical computation, especially in the use of Mathematica. Thus the only trouble 

in the numerical analysis appeared in the present investigation is the one arisen in the 

function L1 explained above.
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III-b. Prescription of the principal part integration 

   In order to perform the principal part integration numerically we must get rid of 

the evaluation of the integrand function at and very near the point of divergence. This 

can be achieved by the limiting procedure: 

i+w y2 dy 
       PPI Re -------- 

Ji—w=                    .Vy2 — 1 exp{ c.\42 — 1} — 11 
      V7c62(1 + z2)dz (1 — z2)dz sin{ czN/2z2  
lim (25) 

              z2 exp{ze-V2 z2} — 1 — z2 1— cos{ez\/2 — z2} 

By choosing small w value appropriately, we can get the numerical estimate of the 
function L1 at various values of its argument. 

111-c. Reliability of the numerical analysis and the comparison with the high 
temperature expansion analysis 

   Here we present in Table 1 the result of the numerical computation of the function 
L1 with several choices of small w-values at various negative values of its argument 

—c2). Results at several positive values of the argument a2 are also given for 
comparison. In the same Table also presented are the function L1 evaluated in the 
approximation through the high temperature expansion. By noticing that as c2(.7=-_-.—a2) 

Table 1: The results of the numerical computation of the function ReL1. w is the 
parameter that specifies the range of the principal part integration, see Eq.(25).

 M2/T2
Numerical Value High T Expansion*

w = 10-4 w= 10-5 0 (c4) o(ce)

1.

0.1.

0.01.

0.001.

0.0001.

0.344736

0.749873

0.343795

0.749873

0.341892

0.749873

0.814701. 0.814701. 0.814701

0.821683 0.821683 0.821683

0.822389 0.822389 0.822389

- 0 .0001

- 0.001

- 0 .01

-0.1

0.822378

0.821730

0.816549

0.777742

0.822379

0.821729

0.816532

0.777522

0.822379

0.821729

0.816522

0.777403

0.822379

0.821729

0.816522

0.777422

 *~ = 1M2 IT2
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becomes smaller the estimate on the basis of the high temperature expansion becomes 
more accurate, we can check the reliability of our numerical computation. In fact, 
at the very small value of the argument, say, c2 = 0.0001 where reliability of the high. 
temperature ,expansion is quite strict, our numerical estimate agrees with that of the high 
temperature approximation up to five significant figures. The result at a2 - /1//2/T2 = 1 
is presented to give a rough idea on the "accuracy" of the high temperature expansion 
which is in the strict sense almost meaningless mathematically at this value of a2. 

   With these observations in hand we can safely say that the present numerical com-

putation is quite successful and thus the results obtained through the present numerical 
analysis correctly represent the physics described by the RG improved EP in the massive 

04 model at T 0 under consideration.

                  IV. Discussion and comments 

  First let us briefly present the results on the phase structure of the 0(N) symmetric 

massive 04 model at .T 0 in the large-N limit obtained through the present numerical 

analysis. By studying the "exact" mass gap equation (or the RS fixing condition) 1-(t)  = 

0 itself we get the 02 --- M2 relation shown in Figure 1, indicating the exsistence of two 

phases: the phase I appears in the high temperature expansion analysis, while the phase 
II is the new phase that may have truely non-perturbative origin. In the second phase 

II the effective coupling becomes strong and the effective mass-squared also becomes 

very heavy, indicating this phase to be almost temperature independent super massive 

strong coupling phase. The first phase I shows a familiar behavior: at low temperature 

the EP develops a symmetry broken vacuum, and as the temperature becomes higher

02

 M2 

 Figure 1: The 02 —M2 relation from the 
"exact" mass gap equation

, = 0. The 
phase II dose not appear in the pertur- 
bative as well as in the high tempera- 
ture expansion analyses.

105ReiVi(0) — 14(0)j/N
21.9095

Figure 2: 

potential 
peratures.

 T/ImI = 21.92

The 
in the

O/i

RG improved effective 

phase I at . three tem-
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the minimum of the EP eventually tends to the origin and at some critical temperature 
symmetry is restored and at sufficiently high temperature the symmetric vacuum at the 
origin survives, see Figure 2. The phase transition in this model proceeds through the 
second order transition. 

   Same analysis can be made in the simple massive scalar 04 model at T 0, through 
which we can see4)'5) that the phase structures of both models are completely different 
from each other. The simple massive scalar 04 model at T 0 has a three-phase 
structure, only one of the . phases can be seen in the ordinary perturbative analysis. 
The temperature dependent phase transition in this model is strongly the first order, 
compared to the second order transition in the 0(N) symmetric model. Also surprising 
is the outcome from the simple massive scalar 04 model at zero temperature4)'5). The 
T --* 0 limit of this massive scalar 04 model at T 0 has a stable three-phase structure 

just as in the model at T 0, and does not coinside with the same model at T = 0, 
which is found to be unstable by having a phase unbounded from below. 

   In the 0(N) symmetric 04 model at T 0, M2 can become negative (which is 
the origin of the troublesome numerical computation), in which case the improved EP 
becomes a function of complex number. The meaning of its imaginary part is not so 
clear, but in the phase I without passing this region of M2 we can not reach the small 

 region, especially the origin = 0, see Figure 1. Because we have started from the 
one-loop perturbative calculation and performed the RG improvement, only the simple 
types of diagrams are properly resummed4),5) and we must be careful about the reliability 

problem in the small cb region7). 
  The problem of reliability of the analysis in the small c regions is surely an important 

one to be discussed in detail. This problem, however, is not related with the present 
issue, i.e., the accuracy of the numerical computation, thus is discussed in the separate 

paper4)'5).
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