B — V5 O MRE O BT SE

Chiral Phase Transitions in QED at Finite Temperature:
Dyson-Schwinger Equation Analysis in the Real Time
Hard-Thermal-Loop Approximation

hill FXK*
Hisao Nakkagawa

BORBBE

Although lots of efforts have been made to undestand the temperature- and/or density-
dependent phase transition in thermal QCD/QED, we cannot have yet truly understood even
the relation between the chiral transition and the confinement-deconfinement transition.
Beginning of the relativistic heavy ion collision experiments at BNL-RHIC has attracted an
increasing interest in studying the physics in thermal QCD, thus has given us an encouraging
time to proceed to further investigations of the mechanism of phase transition in hot and
dense gauge theories, especially in QCD and QED.

The Dyson-Schwinger (DS) equation is proven to be a powerful tool to investigate with
the analytic procedure the phase structure of gauge theories, especially in the vacuum gauge
theories [1,2.3] However, we cannot say that, at finite temperature and/or density, the DS
equation analyses of chiral and/or di-quark condensation have been carried out successfully.

In the preceding DS equation analyses [4-8]. the lessons from vacuum theories have been
so simply applied to thermal theories without close examination. In most analyses the ladder
approximation was used by simply neglecting all the HTL effects [5.6,7), or only by taking the
improper HTL effects into the gauge boson propagator [8]. As a result they have missed the
essential contribution of thermal gauge field theories, especially the important effect from the
"dynamically screened” magnetic mode (having in general a momentum-dependent "mass",
though being massless in the static limit). Many analyses, by fixing in the Landau gauge,
ignored the fermion wave-function renormalization constants (WFRCs) by taking their naive
tree values [5,6,7]. Furthermore, most analyses done in the real time formalism did not discuss
the physical fermion mass function T itself of the retarded propagator [7.8), with the
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neglection of its imaginary parts, together with the inaccurate use of the instantaneous
exchange (IE) approximation to the gauge boson propagation [7,8] All such improper
approximation methods have caused the neglection of would-be-large contributions to the DS
equation otherwise exsisted.

Then we should seriously ask whether we could rely on the previous results of the DS
equation analysis on the chiral phase transition as the real consequences of thermal gauge
field theories. Considering the troubles in the previous analyses [4-8] mentioned above, we
should make a re-analysis by studying the hard-thermal-loop (HTL) resummed DS equation in
the real time formalism, thus might giving a new understanding on the phase structure and
the mechanism of phase transition in thermal gauge theories.

Main interest of the present investigation lies in clarifying what are the essential
temperature effects that govern the phase transition and also in finding how we can closely
take these effects into the "kernel" of the DS equation. Essential procedures of our analysis
can be summerised as follows;

i) Firstly we use the real time closed-time-path (RT-CTP) formalism {9}, and study the
physical mass function Iy itself, not the X, of the retarded fermion propagator, because we
are interested in both the real and imaginary parts.

il) Secondly we accurately take into our analysis the fact that Xz is the mass function of
"unstable” quasi-particle in thermal field theories, thus having non-trivial imaginary parts as
well as non-trivial WFRCs. Neglection of imaginary parts and non-trivial WFRCs actually give
constraint equations to be solved simultaneously. totally dismissed in the preceding analyses.

i) Thirdly and most importantly, devoting our attention to closely estimating the
dominant temperature-dependent contributions, we focus on studying the DS equation being
exact up to HTL approximatior: Both the gauge boson propagators and the vertex functions
are determined within the HTL resummation [10,11,12], with which the gauge invariance of
the result at least in the perturbative analysis is guaranteed. With the HTL resummed vertex
functions [12] we can explicitly write down the HTL resummed DS equation.

iv) Finally, the gauge-paremeter dependent contribution must be carefully studied
without fixing the gauge into some definite ones, such as the Landau gauée,

The third point listed above is better to be taken step by step into the actual analysis of
the DS equation. In the present analysis we present the result of our first step investigation
in strong QED; focussing on what happens when we take into account exactly at least the
HTL resummed gauge boson propagators. Analysis in QCD and effects of fully including the
HTL resummed vertices will be presented in the separate paper [13]

The DS equation for the physical, ie. the retarded fermion self-energy function Xz in the
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HTL approximation ¢an be obtained by applying the following approximation to the full DS
equation;

i) replace the full gauge boson propagator with the HTL resummed propagator, and

ii) approximate the full vertex functions to the HTL resummed vertex functions.

Then in the RT-CTP formalism we get in QED the desired DS equation [121 At zero
temperature, the wave function renormalization constant A(P) coincides with B(P) and equals
to unity in the Landau gauge, while at finite temperature it is not. Appearence of the HTL
resummed vertex functions together with the HTL resummed gauge boson propagators
assures that the HTL approximation is consistently carried out in studying the HTL
resummed DS equation [12], and guarantees the result being gauge invariant, at least, in the
effective perturbation regime. Neglection of the HTL contribution to the vertex function,
6°T*.5,. simply brings us to the ladder DS equation with the HTL resummed gauge boson
propagator. It significantly simplifies the structure of the DS equation to be examined, thus
reducing the technical difficulty to handle the DS equation itself The price to pay is to lose

the assurence of gauge invariance of the results.

In the present analysis as already mentioned above, we investigate the consequences of
the ladder (point vertex) DS equation with the HTL resummed gauge boson propagator. The
DS equation obtained, is still quite tough to be attacked, forcing us further approximations for
the analysis to be effectively carried out. However, the approximation made use of must be
consistent with the HTL approximation, without missing the important thermal effects out of
the kernel of the DS equation.

Here it is worth noticing that the instantaneous exchange (IE) approximation frequently
used in the preceding analyses [6,7.8] is not compatible with the HTL approximation in the
strict sense. In the exact IE-limit the HTL resummed transeverse mass function vanishes and
the transeverse (magnetic) mode becomes totally massless. Namely the IE approximation
discards the important thermal effect coming from the Landau damping, thus dismissing the
dynamical screening of the magnetic mode. This causes the famous quadratic divergence of
the Rutherford scattering cross section. The reason whby in the previous analyses this
divergence did not appear, is that the imaginary part of £y is completely neglected there
from the beginning, namely that the equation for Im Z x is totally discarded.

Taking the above into account, the approximation we further make use of is the
improved IE approximation to the longitudinal gauge boson propagator, by keeping the exact
HTL resummed transeverse propagator. In the IE-limit the HTL resummed longitudinal mass
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function, *IT% (K), has a definite thermal mass mg*~ (gT)’, representing the Debye screening
due to thermal fluctuation, thus even in the IE limit the longitudinal mode can take into
acount the essential thermal effect. In the present analysis the gauge is fixed to the Landau
gauge (& =0).

It is fair to note that in the point vertex ladder approximation, as already mentioned
above, the gauge invariance of the results is spoiled. To maximally respect the gauge
invariance, we should solve the DS equations with the constraint A(P) =1, which guarantees
Z:=], being consistent with the Ward identity Z,=Z, This can be done [16] by successively
adjusting the gauge-parameter ¢ in solving the DS equations.

Now we should salve numerically the DS equations with the 1E approximation to the
longitudinal mode [17] Result of the present analysis shows the two facts: i) The chiral phase
transition is of second order, since a fermion mass is generated at a critical value of the
temperature T or at the critical coupling constant a without any discontinuity, and ii) the
critical temperature Tc at fixed value of @ is significantly lower than the previous results
[6.7.8]. namely the restoration of chiral symmetry occurs at Jower temperature than
previously expected. The second fact shows that in the previous analyses the important
temperature effects are neglected due to the inapropriate approximations.

The critical coupling constant ac as a function of T, and the critical temperature Tc as a
function of @, can be also determined. From these results we can estimate the critical
coupling constant ac in the limit T—0, ac (T—0), and the value of coupling constant «
where the critical temperature Tc becomes zero, @ (T¢=0). Our result shows that, as T
becomes smaller, the critical coupling constant ac also becomes smaller and seems to
consistently decrease from above to the zero temperature result. However, the estimated
values, ac (T—0) ~25 and « (Te=0) ~2.5, are significantly larger than the value ac{T=0)=
7 /3 determined by theoretical analyses [1] of the DS equation for the fermion self-energy
part X (P) at zero temperature. T= 0, in the ladder approximation in the Landau gauge with
the tree level photon propagator. Since the HTL resummed gauge boson propagator °G*” is
simply reduced to the tree level photon propagator in the imit T—0, we are not quite sure

why such difference emerges.

Present resuit shows the correctness of our research-strategy, namely, the importance of
the full HTL resummed DS -equation analysis of the chiral phase transition at finite
temperature/density. Further investigation along the line of our strategy is needed to answer
the question how we can closely take the essential thermal effects into the "kernel” of the DS

equation, which is now under investigation.
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