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Current algebra sum rule, which relates the intergral of the inclusive cross section of pions
to the total cross section, is derived. It is shown that this sum rule presents a new type of

finite energy sum rule in order to calculate the pomeron component.

With the hypotheses of the current algebra (CA) and the partially conserved axial-vector
current (PCAC), we have succeeded to derive many beautiful sum rules, and to extract out
fruitful ideas.!” Almost all of the existing sum rules are, however, obtained by sandwich-
ing the current-commutator with stable one-particle states, and have the form relating
the integral of the total cross section to some constant. Another type of sum rules starting
from the current-emticommutator can also be obtained.?) The derivation of these sum
rules relies on the Deser-Gilbert-Sudarshan representation®’ of a stable one-particle
matrix element. Namely such sum rules have been derived by sandwiching the current-
anticommutator again with stable one-particle states, thus have the same structure as
the above-mentioned CA sum rules.

During the 1970’s semi-inclusive reactions initiated with both hadron-hadron and
lepton-hadron are widely measured, and much has been studied by using the inclusive sum
rules and various dynamical models.#) However, few attempts to use the hypotheses of
CA and PCAC to these reactions are there5! Some pioneering works in order to derive
sum rules for the semi-inclusive cross sections by sandwiching the current-commutator
with two-particle scattering states have been done,®) but meaningful sum rule could not
be obtained.

The purpoese of the present paper is to show that, despite of the negative result until
now, we can in fact get the CA sum rules for the semi-inclusive cross sections. With the
use of a method slightly different from the cne in calculating the one-particle matrix
elements, we give simple derivation of the CA sum rules for inclusive pion production, and
also study its indications.

We assume the following:

i} ‘The light-like charges
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O= j dx_dx, (= j dox_ 7 (%)) (1)
satisfy the algebra
(@3, 51=20, (2)

where 931=(Q+id9/v 7.

ii) Divergence of an axial-vector current is proportional to the pion field

8, F #(x)=cp(x), c=v2M,Mig,/g ). (3)
We also use the final state density operator”
p=T|p10: > <p/psS|T* 4)

with the trace property
Tr{p} E? < | T prps > <py Py | T [mow >
=2V 4(5)0. () (22)*8* (1 + P2 — 21/ — P21, (5)
where 7" is the scattering matrix defined as S=14i7, and 41/2(s) is the usual flux
factor, i. e,

A(s)=[s—(my+my)%) (s — (my—m5)?), (6)
Now consider the operator
2Q:0=1(9%, Q2o (7)

and take the trace of both sides:
2T <no | Q4T | Py > < pi/ b | T+ v >

= D <n | QT | pypgme> <py'p/ | THQ 10> — (+ 0 -). (8)
In contnrast to the ordinary derivation of the CA sum rules, we now must consider the
matrix elements of the commutator, Eq. (2), between two-particle scattering states, i. €.,
Eq. (8), and this brings in some complications.®) The problems are 1) the prescription how
to extract out the completely connected contributions in both sides of Eq. (8), and ii) the
estimation of the contribution from the three-particle process. The first problem is
rather easily solved for the R. H. S. of Eq. (8), but should be carefully examined for the
L.H.S.. The second problem is overcomed with the assumption that the completely
connected part of the three-particle process should exibit ordinary Regge behavior.

I) Calculation of the R, H.S. of Eq. (8)
Carefully extracting out the completely connected parts from the matrix elements
<nw | QST | pyp. >, we have (by using Eq. (3)),
.§<”"'lé5—|ﬁlﬁz'.">=<?1’pz”"|é§r|”"'>=_(+“"‘)
=2 (47}?%;7 iz’:‘<?1'ﬁz""| Jdax_jz+(x) | o>,
x <] [ @ je(5) | Dibsn> = (+0-)

2
= 20393 (P,— P 2P/ 5 j P*dq_

X Dgetgyr < PP i (O) [ 4> <now | o (0)| iy > (2) 04 (Pt a— P)

—(+e-) (9)
for the R. H. 8. of Eq. (8), where 83($)=d(p.)8*(#1), ¢=(¢:=0,¢-, ¢:=0), P;=
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b1+ b, and P/=p/+ p,’. Because we extract out only completely connected parts, Eq.
(9) becomes, after sctting bi=p/ (=1, 2)

Yinux d xt d T
(2033 (0)2P /-, M4 [[1/4(5)] yz 70‘}__ "M aro

7= o+ \J, A
+ J” oy DISC —Disc. :ﬂ

_ wer _ dW? fdot da’f"
= (27)%% (0)2P)- M4 [[VA(S)L“M (Wz 5)2 g

+ r[" men (W2 S)z DlSC _Dlsc % ’ (10)

where do°/dq denotes the invariant cross section detecting a particle ¢, and dg=d3¢/

(2r)%2q,. Variables appearing in Eq. (10} are the following:
v=q-P,=(s—W2) /2, W2=M2
Dmaz:'-MlI/—s_! Wmale/?_Mﬂ Wnu'n:l/?—'—Mx' (11)

II) Calculation of the L, H, S. of Eq. (8)

2%: <n| @sT | i > <y pyl= | T | e >
=20 < py' b/ | (T+=T) Qg pr03 > 12)

Using the Fourier transform of the local current V§(x), 17‘5 (g), we can calculate the
matrix elements in Eq. (12) by the use of the low energy theorem of Low®)®).

For the sake of simplicity we consider the case of unpolarized proton-proton states.
Generalization is easy and gives the same result (Eq. (18), below). 'Then, we have the

following;
bl DV @) | o>
= @)W0LP~ P[0+ bt b+ 2 Fit L (0= bt b= 0 Fot )

13)
where the rest parts in [...... ] vanishes in the limit of forward scattering, and
1 _1_____ _1_ 1
Fl_"lp(pl‘q ?/+q Pz'q X 'fI) 4
L ypfs_b2dg_ Pq _Pyra_ p+q\ 34
+ 2 3(4 P14 pita bprq pleq ) 14)

Fig. 1 Semi-connected diagrams.
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A is the scattering amplitude for pp—pp and I{ is the third component of the proton
isospin. Notice that the expression (14) contains the contributions from the semi-connec-
ted diagrams (see, Fig. 1). If we subtract out these contributions following the pre-
scription given in the Appendix of Ref. 6, the remaining contributions corresponding to
the completely connected parts — which are the one we are actually considering — become
(by setting p,=p/),

AP | (T =) Q| prps > =lim 2 < pipyr | (T =TIVE@) | po2s™

= (2r)%3()2PHI (Im A) a5)
where I; is the third component of the isospin of the initial state, and
Im A=1'4(s)0..(5). (16)
Now we take the limit s—+c0. Remembering the fact that the pions being considered
are the light-like ones, i. e., g¢?=0, ¢.,=0 and g, =0, the three-particle scattering amp-
litude may be replaced with the one in which pions are near their threshold, namely the
one in which pions are treated by the external line insertions. Then the contribution
from the three-particle processes to Eq. (10) can be estimated, by using the assumption that
the three-particle amplitude shows the ordinary Regge behavior, as

= dw? 2W2-s5) 1 21/s
jwm.. Wi—s)? v~y B 20 an

With this estimation, at sufficient high energies we have the following sum rule:

2y & (VA0 ()

Mig (= VATAW? (dowt _ dor- ]
frgg(OS w1,y (WE=35)2 { dq dq } qL=0 (18-2)
_ 16zMigs (1 dx oz | diort d2gm—
N 7E,E6) “ —[2M e X I/H_ x2s {_BEEIL dxdtIJ. |fIJ.2—O (18-b)

(18—<)

~16eM3 g% j 1 odx ( dPomt _ dPorT
HY o X {dxdcu dxdqﬁ} q.°=0

To obtain Eq. (18-b, c), we assume the scaling behavior of the inclusive pion production

cross-sections. As was noted earlier, this sum rule is independent of the initial states.
In addition, it has a form closely connected to the Adler-Weisberger sum rule,

Here we briefly comment on the implications of this sum rule. Firstly, because we use
the PCAC, the resulting sum rule may not reproduce the leading particle effects which
are clearly seen in the experiments r*p-»r*X.4) Therefore we expect that the non-
leading particle component (NLPC) of the detected pions should satisfy this sum rule.
Secondly, if the NLPC really scales at sufficiently high energies the behavior of the total
cross section in such energy regions is governed by the small x behavior of d%(zt—n")/
dxdg® near q 2=0 as follows:

7 r+l
) ~ r“‘ K )|~ 1(1:1%)

for
dxdg .2 2= ¢ a~
S xaqy qL 0 F(a>0)

The case where the scaling violation exists is not considered here because the experimental
situation whether there really exists the scaling violation in this NLPC or not is still

confusing, and also because, even if there exist small scale-violating phenomena, their
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effects may not be significant in the above estimations.

Finally we make notice the following fact. The sum rule, Eq. (18), may be considered
as a type of finite energy sum rule (FESR), relating the integral of the “non-pomeron’
components of the three-particle to three-particle amplitude from the threshold to some
sufficiently high energies, to the “pomeron™ component of two-particle amplitude at that
energies (with the neglection of terms of order 1/1/75). It seems to be an interesting
question to be studied what emerges from this new FESR. More complete analysis
of this sum rule and its implications, and the local current version of it will be given

elsewhere.
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