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Improving the Effective Potential
at Finite Temperature:

Hisao NAKKAGAWA and Hiroshi YOKOTA
Institute for Notural Science, Nara University

ABSTRACT

We propose a simple and effective procedure to improve the finite temperature
effective potential so as to satisfy the renmormalization group equations. We also
demonstrate this procedure by explicit calculations at zero temprerature renormal-
ization scheme.

I. Introduction

The effective potential (EP) at finite temperature is a convenient tool to investigate
the phase transition of the relativistic quantum field theory?. One of the common pro-
cedures for computing the EP is the perturbative calculation with the loop expansion®).
However, the perturbatively calculated L-loop approximation of the EP, V(L) suffers
from the famous problem of renormalization-scheme (RS) dependence?; the rapid de-
pendence of the tree- or 1-loop EP, V(% or V1), on the choice of renormalization points
¢ and Tp is the most popular example. No reliable prediction can be made without
solving this problem®.

We know that the exact EP at finite temperature satisfies a set of two renormal-
ization group equations?) (RGEs), whose differential operators are just total derivatives
with respect to . and Tp. Namely, the exact EP is automatically p- and Tp-independent.
How can we use this fact to solve the problem of RS-dependence, especially of the renor-
malization scale dependence? This is the key question for carrying out the RG improve-
ment of the EP. Recently, in the case of the zero-temperature field theory, an elegant
procedure has been proposed® to improve the EP so as to satisfy the RGE.

In this paper we extend the idea of Ref. 5) to the finite temperature field theory
and propose a simple and effective procedure for improving the finite temperature EP
so as to satisfy the corresponding RGEs.

* Received September 26, 1995.
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II. RG improvement at finite temperature

For definiteness, let us consider the O(N) symmetric massive A¢* model of an N-
component real scalar field in the large-N limit. The Lagrangian density of the system
is

1 1 1
L = §(am)2 - §m2¢2 - g)\(gs")2 — hm* | (1)

¢2 = ¢a¢al a: 1, 2! ..-7 N hd
Suppose that we employ the mass-independent renormalization and renormalize the the-
ory at an arbitrary mass-scale p and at an arbitrary temperature T with definite renor-
malization prescriptions (e.g., the modified MOM scheme with symmetric/asymmetric

renormalization, etc.). Here we pay attension only to the - and Tp-dependences of the
perturbative result.

Then the effective potential (EP) satisfies the two renormalization group equations
(RGEs) with respect to the renormalization points u and &(= T/ u):®
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(p'au‘l'ﬁpa/\ m Bpamz m“8¢+ﬁh“6h) V(¢'1m ,)\,h,T,,u. yé) =0, (2)
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(66—£+ﬁfa/\ maf—a?n—z ¢’Y£a¢+5h£ah)v(¢',m,/\,hyT,#,f) = 0. (3)
The solution is given by
V(g,m?, A h, T 42, €%) = VI(g(t, p), ™2 (L, p), A1, p), h(L, 0), T; 12, 6%€%),  (4)

where ¢, m?, X and h are running parameters whose t- and p-dependences are determined
by

ax _ Om2 o
a—:E = ,61(/\), —5;1;__ — _91' (/\)m'l’
Ty h o
o= —uWh g = BN, @)= 6w (.8, (5)

with the boundary condition that the corresponding barred quantities reduce to the
unbarred parameters at t = p = 0. Therefore, the EP is completely determined once its
Junction form is known at certain values of t and p.

Then the question posed in the introduction reduces to the following: How can we
determine, with the limited knowledge of the L-loop calculations, the functional form of
the EP?

In case of the zero-temperature field theory, by studying the logarithmic structure
of the L-loop EP, V¢L), Bando et al.®) showed that the knowledge up to the L-loop
calculations can determine the functional form of the EP being exact up to the Lth-to-
leading log order. Beautiful point of their procedure is that the EP thus determined
automatically satisfies the RGE (2) up to the Lth-to-leading log accuracy level.
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In order to extend the idea of Ref. 5) to the T" # 0 case of our interest, here we study
the structure of the perturbatively evaluated EP. In the large-N limit, Z; = 1 (namely,
Y. = ¥¢ = 0) and contributed diagrams are chain types, daisy types and super-daisy
types only, which have the following general structures:

i) contribution from chain diagrams (L > 2):

4

M R
Vc(,:;)m = ¥ [polynomials in A, , Az] , (6)

2) contribution from daisy diagrams (L > 4):

N4
Vci(i)sy: /\A: [(numerical factor) x (ANAI)LﬁlAL"l] ' ()

3) contribution from super-daisy diagrams (L > 5):

e

super —daisy

NM*?
= S [polynomials in Ay, -+ ,Ap o] , 8)

where Ay = N, M? = m? + (1/2)A¢? and

] 1
M2A, = %£m+(6M2)(1), 9)
] 1
_ L A =Pl >3 (11)
M2zt = gfk(kz —M2)n nzd).

(6M3)() and Zf\l) are the 1-loop mass and coupling counterterms respectively, and f,
denotes the ko-summation and k-integration. Thus by introducing an effective variable
T = AnA1, the L-loop contribution to the EP can be expressed in the power-series in 7;

NM4 L 4
v = 2 [Z Ag,ng>TL-‘+z6L,ol L 2= Ak (12)
=0

Then, the full EP becomes

V:iv@) = N—Wixﬁv [ Fe(7) + 2620 | (13)
— AN £ Y
L=0 £=0
where -
Fy(r)= Yyttt (14)
L=¢

This form of expansion (13) in powers of Ay just gives a ‘leading-7' series expansion:
namely, Fy, Fy, ... correspond to the ‘leading', ‘nezt-to-leading, . . . T terms, respectively.
The meaning of ‘leading-T' becomes clear later,
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At 7 = 0, the ‘#th-to-leading 7" function Fp is given solely in terms of the £-loop
level potential, Fp(7 = 0) = v_EL:"). So, if we calculated the EP up to the L-loop level
Ve =V@ 4+ v 4.4 V) then at 7 = 0 it already gives the function ‘ezact’ up to

‘Lth-to-leading 7’ order:

NM* &
V=S YN [0 st | + 00K = Vilo + O0K) . (1)
N £=0
Therefore, with the L-loop potential V}, at hand, the EP satisfying the RGEs can
be given by
L

Vv o= NM“(t)ZZ\ﬁ;I(t,p)[ﬁg‘)(t,p)Jrz(t,p)&z,o]
¢=0

7(2,0)=0
= Vi (¢, m?(t,p), An(t, 0), R(L, p); 17 €™, E2€%) | L\, 1 (16)

where the barred quantities should be evaluated at t and p satisfying
7(t,0) = An(t, p)A1(t, p) = 0.

Although the solution (16) is “exact” only up to Lth-to-leading 7 order, it satisfies
the RGEs exactly if the runnings of the barred quantites are solved exactly. If the
runnings of the parameter An /Ay, m2/m? and h/h are solved correctly only up to Lth
power in Ay in the sense of the leading 7 expansion, our solution (16} satisfies the RGE
up to Lth-to-leading 7 order and “exact” in that order.

[II. Explicit calculations
In this section, we demonstrate our procedure by explicit calculations to the ‘nert-
to-leading 7’ order (L = 2). Here, for simplicity, we use the zero temperature renormal-
ization scheme, and thus all renormalization constants are the same as those at T' = 0.
The unimproved effective potential is

. NMA 2 1 74 T2 T° T?
2 = oy [1 FTHT A {—641r2 + b ("AZ?') ~ Zarap (W)}
2 1N L s _N
+ AN (327r2) ] +m* | h Y (17)
where
3 1 M? T? T
T = /\N{m (IDF—I) +WL1 (W)} s (18)
¢ o]
Lo (a—lzj = f K? dk In[1 — exp{—-v/k? + a?}] , (19)
0
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1(a2) 2Jo VE?+a? exp{VE? +a?} -1 0
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The coefficient functions of the RGE are the same as those at T = 0 and calculated by
(exact up to 2-loop level)

Nb

Bu(An) = —=2% =60, 0,00n) = —bAn , Buu(h, dv) = — —2hAn . (21)

16 1672
Thus, we can get the improved EP as follows:

. NMUQT ! ~ s
Ve = 2XN(t) [1 + I\N(t) {_64?"'2 + 7T2M4(t) Lo (M2(t))

M? < AN
- )y = &
T~y WO Ty
and the barred quantities are evaluated at such a t that satisfies 7(¢) = 0.

where

M2(t) = (%)

Here, we make clear the meanings of ‘leading-r’ and ‘ezxact’. 7 includes leading log
term and leading T term for large T*

1 M? T2
Ay 377 1117+———--24WI2 . (24)

Therefore, we use the term ‘¢th-to-leading T’ in the simultaneous sense of the ¢th-to-
leading log and the ¢th-to-leading T. Namely, “ ‘exact’ up to ‘Lth-to-leading T’ order ”

[

means “ exact up to Lth-to-leading log as well as Lth-to-leading T order”.
Next, let us see the behavior of the improved EP.

e Expanding the improved V7 with respect to (unbarred coupling) Ay, we get
- NM* 1 M? 3 T4 T2
(O v [”f‘N {—32 2 ('“7 - 5) ot (xﬁ)}
2 2
2 ([ 1 [ M (T 1
AN ({ 32n2 ('“ 2 ) tameltae ) T e

(h - %) i (25)

This is nothing but the unimproved 12, Eq.(17).
¢ The condition 7(¢) = 0, which determines the function form of the EP up to the
disired next-to-leadinf 7 accuracy level, gives the equation

M) = M} - %"’IM(t) + 2)\NbAM2(t) , (26)
where
M = M+ % , (27)

A = 2 (log %TT - w.»;) . (28)
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Fq.(26) is valid in the high temperature regime, and works as the mass gap equa-
tion which determines the M?(t) at higih temperature.
M (t) can be expanded for small Ay as

o AnT AT \?
Mt) = My {1— Ty +O((16ﬂML) )} . (29)

e We calculate also the critical temperature T¢ in a crude analytic estimate:

AnTE
2 [oi
m +—24

This agrees with the result of Dolan-Jackiw™,

=0. (30)

IV. Summary

e We proposed a simple and effective procedure of the RG improvement of the ef-
fective potential at finite temperature.

s Applied it to the perturbative calculation in zero-temperature renormalization
scheme: it automatically carried out the large-log resummation as well as the re-
summation of large-T terms through the chain, daisy and super-daisy summations.

¢ This procedure may be extensible to general case by studying the structure of
perturbative expansion.

Footnotes and References

* This paper is based on the talk given at the 3rd Workshop on Thermal Field Theories
and Their Applications (1527 August, 1993, Banff, Canada). Results of more
extensive analysis will be published elsewhere,

1) R. Jackiw and G. Amelino-Camelia, in BANFF/CAF Workshop on THERMAL
FIELD THEQRY, Proceedings of the 3rd Workshop on Thermal Field Theories
and Their Applications (15-27 August, 1993, Banff, Canada), edited by F. C.
Khanna et al. {World Scientific), p.180.

2) See, e.g., T. Muta, Foundations of Quantum Chromodynamics (World Scientific,
Singapore, 1987).

3) The renormalization-scheme (RS) is nothing but a precise precription to define the
renormalization constant. In this sense, the renormalization scale {point) g is one
of the parameters that specify the RS. For details of the RS-dependence, see, e.g.
Ref. 2).



Nakkagawa and Yohola @ Improving the Elfective Potenlial. .. 11

4) H. Matsumoto, Y. Nakano and H. Umezawa, Phys. Rev. D29 (1984) 1116.
5) M. Bando, T. Kugo, N. Mackawa and H. Nakano, Phys. Lett. B 301 (1993) 83.

6) The choice of p and € as independent parameters is preferable to the other choice
of 1 and T, since with this choice the beta- and gamma-functions appearing in
RGE (2) have clear correspondence with the zero-temperature counterparts.

7) L. Dolan and R. Jackiw, Phys. Rev. D9 (1974) 3320.



