28

Resolution of Scheme-Dependences of
the Photon Structure Function

—Solution to the Problem of Large Corrections in the Large-n Limit—

H. Nakxacawa and A. NigGawa™

Institute for Natural Secience, Nara University
*Department of Physics, Osaka City University

(Received 30 September 1985)

Optimization analysis of the photon structure function is worked out for a simplified two-
component model that keeps the essential behavior of the complete structure function and
becomes exact in the large-z limit. Our findings are as follows. i) Thorough resolution of
scheme-dependences can be achieved satisfactorily if the renormalization and the factori-
zation scheme dependences are investigated simultaneously, ii) The two-scale formalism
of optimized perturbation theory has dealt with the large second order corrections as n—oo
so that at least part of the leading large-# terms are absorbed into the coupling constant,
and that the optimized perturbation expansion may show an improved convergence behavior,
thus giving a solution to the problem of large corrections in the large-# limit. iii) The
above solution agrees at least up to the leading large-z terms with the results obtained
through the kinematical analyses based on the resummation of singular terms. iv) The
optimal scheme, in which we can get the above beautiful consequences, has been shown
exactly to lie within a class of schemes where two-loop hadronic anomalous dimension

vanishes.

1. Introduction

The asymptotically dominant contribution to the photon structure function comes
from the inhomogeneous point-like term that can be calculated solely from quantum
chromodynamics (QCD) without suffering from any unknown matrix elements of
local operators’*?, and the subdominant hadron-like (or VMD-like) term contributes
essentially only to the small-x regions or the small-#» moments®. DBecause of this
beautiful fact the photon structure function has been discussed as a clean testing
ground of QCD. However, once we apply QCD perturbation theory the photon
structure function can not either escape the famous two diseases: The first one is
the calculational scheme-dependences®, such as the renormalization scheme (RS)
dependence®'*'” and the factorization scheme (FS) dependence®'®:'”, of the result
inherent in QCD perturbation theory, and the second one is the large negative

subleading order corrections coming from singular terms for x~1'"'% or equivalently
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as n—»co that might be of kinematical origin.

In order to study the problem of scheme-dependences the key observation is the
following fact: Perturbative QCD calculations of physical quantities depend essen-
tially on two calculational schemes*'*®, the RS and FS, and because the FS-depen-
dence is closely connected with the RS-dependence, both scheme-dependences should
be analyzed simultaneously”***. Resolution of ambiguities due to scheme-dependences
has been carried out successfully'® with the use of the generalized two-scale for-
malism'® of optimized perturbation theory (OPT) based on the principle of minimal
sensitivity (PMS)™, Analysis of hadronic structure function has provided us with,
among others, an interesting consequence about the convergence behavior of pertur-
bation expansion'”; Through the optimization part of the large corrections are
absorbed into the optimized effective mass-scale with which the coupling constant
runs, and the optimized perturbation coefficients become moderate. Thus the con-
vergence of the perturbation expansion in terms of the coupling constant is formally
improved.

This fact reminds us of the consequence of kinematical approaches™'® to handle
the large subleading order corrections coming from kinematically singular terms
mentioned above. Amati el al'V claimed with a posteriori justification'® that, by
resumming such perturbation series being singular as ¥—1 (or n—o0) to all orders
of the strong coupling constant, the argument of the effective coupling constant at
each vertex of the ladder rung is rescaled as @*—=®*(1—x) and that the perturbation
expansion in terms of such a “rescaled” coupling constant contains only less singular
perturbation coefficients thus shows formally an improved behavior of convergence.
It is interesting to carry out the optimization for various quantities and to compare
the results with those {from the kinematical analyses. Such investigation may shed
some light on the question what the PMS-optimization does, not in the context of
a mathematical prescription but as a physical effect.

Recently based on the analyses of structure functions of the photon'” as well as
hadrons'” we have shown'® that the optimization through the two-scale formalism
may in fact have correctly taken into account the kinematical boundary effects,
and that a kind of “equivalence” holds for the treatment of kinematically singular
higher order perturbation coefficients between the OPT based on PMS and the
kinematical approaches. In contrast to hadronic structure functions, however, the
OPT analysis of the photon structure function is quite complicated, as has been
discussed in Ref. 17, and the complete analysis can be carried out only through
numerical computations with one important assumption. Therefore the analysis of
the photon case should be supplemented with further investigations based on a
firm foundation. For this purpose we consider in this paper a simplified model for
the photon structure function and carry out the optimization exactly without any
assumptions. Because we are interested in the problem how the kinematically
singular higher order coefficients are dealt with in connection with the kinematical
approaches, the model considered should keep the essense of the complete photon
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structure function in the large-n limit. This analysis also gives a justification for
the assumption adopted in Ref. 17.

II. Structure Function of the Photon

A. The model
The n-th moment of the photon structure function
Fa@)={ dv x Fitx, @) (1)
can be factorized in terms of the Wilson’s operator product expansion (OPE) as
FL@)=95.(a(M))- &, (Q/n, M/1, a()), (2)

where 9, is the matrix element of the local operator with spin-#, and gﬂ the OPE
coefficient function. Throughout this paper we carry out the calculation valid to
the first order in the electromagnetic fine structure constant aem=¢*/4r- Following
the two-scale formalism of OPT'® we calculate the OPE coefficient function in
terms of the QCD effective coupling constant &(z)=g*(x)/4r* , renormalized at
the scale #, and renormalize the operator matrix element at the scale M.

In this paper we consider a simplified two-component model of the photon struc-
ture function, namely in Eq. (2) 3 and —%)ﬂare two-component row and column

vectors, respectively (hereafter the moment-index n is suppressed for simplicity),

5‘ = (SNSI 197)1 (33)
& = (%) , (3b)
Z
or
Fr=9. & = Ixg Brs + 9, €. (3e)
The operator matrix element Esatisfies the equation
d9@M) _ 3 .
Al M " G (a(M))+y(a(M)), 4)
where 7 denotes the 2 by 2 anomalous dimension matrix
_ (1¥s O
r= (K2 9) (5)

Then Eq.(4) is decomposed into two equations

A s (@l — gy ua(M))rws(a(M)) + 9, (M) Kns(a(MD)),  (6a)

______ 0, or 9, is independent of M, (6b)

which can be easily integrated to give'®

Ivs(a(M)) = A expg“‘”’ dx Trs(%)

eo B(x)
et | Kns(x) st ras(y)
o ar T e b TS @

where A is the scheme-independent constant”''", and the B-functions are defined

ash 1
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di(p)/dlnp=B(d (), @(u=p,) = g / 4z°, (8a)

da(M)/dlnM=g(a(M)), a(M=M,) =gi/4=%. (8b)
As usually® we shall neglect the first term in Eq.(7), keeping only the inhomo-
geneous point-like term that is dominant in the asymptotic limit. Thus we are not
concerned with the structure function at small-x regions®.

Perturbation expansions for various quantities are as follows;
ras(x) = rag X+ X+ ,
Kys(x) = e(Ks+ Ky £+-) :
B(x) bx*(1 +ex+e x8+-00) ,
B(x) bx2 (1 +ox+7, £24--) , 9)
%\'S(x) = g° 61v5(1 4+ Bys x+ ) ,

I

Z(x) = e 8,(B+-) :

9, =1,
where ¥ denotes the effective coupling constant a(M) or G(#). It is to be noted
that the leading and the second order coefficients of the A-functions, b and ¢,
and the leading order anomalous dimension coefficients 7,¢ and Ky are all scheme-
independent quantities, which have been calculated already*”'». Other second order
coefficients ypg, Kis, Bxs and B; depend on schemes used in the actual calcu-
lations.

Now consider the next-to-leading (second) order approximation by truncating

everywhere, e. g., in Eqs.(9), the perturbation expansion up to the second order
terms. In this order two f-functions 8 and § coincide. Then we get the second

order expression for the structure function as
Fr= —pFr/et

d 1
= —08,B,+6ws(1 +Bus D(1{zg)  (1+ca)

c
l+c

Xf dz {CKJ\PS z—dp,-s—Z(l___z) dpls+1 + KN!S z—dms—l(l_z) dﬁs] ,
e

1+ ca

10)

where a=a(M), d=d(p), dys = ris/b and dys = rps/be. Eq.(10) is the “exact”
expression up to the second order calculations. In the limit of small coupling
constant 4~=d=(, we can get a more convenient expression. In taking into account
the fact that the upper limit of the integration in (10), ¢/(1+¢), is less than unity,
or
¢/ (1+¢) =0.606 for n,=4,

where 7, is the number of quark flavors, we understand that the main contribution to
the integral comes from the lower limit. Thus by expanding the integrand around
z=0 and keeping up to the desired terms, we get the following ‘“approximate”

expression
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Fr=—b3,B,+8xs (1+ Bysd) (1+ ca) %
Kys—cKys(1 + dils)

% [ Kis 14ca i
1+dvs a dns
cdys

(3 eKts(L+ dfs) — Ky ay

+3NS—1 1+CG] -

To get the above expression we have neglected terms proportional to (ca/(1+ca))dxs,
to be consistent with the approximation that we have neglected the first term in
Eq. (7).

The second order effective coupling constants (M) and d(g) are defined by
integrating the renormalization group equations (8) as™"'®

bl % =7 Lo ), (12)

i s ¥(+ex) a 1+ca
M = a1 ca
Ibl In = “S., P+ at ¢ tn( {550 (12b)

B. Connection with the complete structure function
Here we discuss about the comnection of the simplified model presented in A
with the complete photon structure function, and show that in the large-# limit
the complete structure function essentially reduces to the model considered.
The complete photon structure function consists of four components, i. e.,
—

9 = (9 Y 9xs ) = (8, 9,), (13a)
(B = (T, G G, G) = ('F F)), (136)

I

& and & are three-component vectors whose components are obvious. The operator

—
matrix element 9 satisfies the equation

d_t;"_(l&M ) 9la(M)) - r(a(M)), as

where the anomalous dimension matrix 7 is given by

Yoo 7oy 0 1 0

roa o6 0 | 0 ;i
TN O e OIT R ds)
K, Ko Kusi 0 |

Eq.(14) can be integrated to give'®

ﬁ(a(M)):ATexpS“‘ dx ;gg

ety R(x) a (M) (3
+ 9,Sl dx 16 T expS; dy -T2 (16a)
% =1. (16b)

The T-ordering in Eq.(16a) is now necessary because of the matrix structure of

the anomalous dimension matrix 7, namely, [7(a"), 7(a”)] = 0,
The existing second order calculations in the MS and/or MS scheme show,
however, that the one- and two-loop anomalous dimensions behave in the large-n
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limit as follows™ ™
T ~ 78 ~ 1% ~ ¢ (n n), (17a)
e ~ 18, ~ € (A/m), (17b)
Tie ~ Téo ~ Ths ~ € (In m), 17¢)
The ~ 18 ~ € (In*n/nm). A7d)

Thus in the limit ©—> co the anomalous dimension matrix 7 in Egs.(15) and (16)
becomes essentially a diagonal matrix and the T-ordering in Eq.(16) can be omitted.
Therefore we get (the first term in (16a) is neglected)
Frjet = 6,9,(a(M))(1+B,a(#))
+ 8g9e(a(M))Bsd(y)
+ nsIns(a(M))(1+ Brsa(u))

+ &,B,, (18a)
. a (M) Kﬂ+ le a (M) r‘_: _|_ T:y
9uaM) = [T dx LG T exp [T dy By Lty »
(i=¢, G, NS) . (18b)

If we further take into account the facts that the gluon contribution (the second
term in (18a)) is not effective in the limit #—co (or x—1), and that the fermionic
contribution is essentially the same as the non-singlet contribution, then we recog-
nize that the model presented in A is essentially nothing but the large-n limit of

the complete photon structure function.

III. Optimization

A. Optimization variables

Now we consider the second order expression of the model structure function,
Eq. (10) or Eq. (11), and apply the two-scale formalism of OPT. In the second
order approximation, a set of parameters that label scheme-dependences is [the
renormalization scale lng, the factorization scale IlnM, the two-loop anomalous
dimension dys = 7as/b¢ and Ky, and the quantities to be optimized are the
second order coefficients Bys, B, and the effective coupling constants a(M) and
a@(y¢). In the following we take all the above four scheme-labeling parameters
(Ing, InM, d@s and K,5) as independent optimization variables.

Before entering the details of the optimization of the photon structure function, we
here take notice of the following fact: The perturbation coefficient Bys appearing
in Egs.(10) and (11) is nothing but that appears in the calculation of the non-
singlet component of hadron structure function. Thus the structure of Bvs, except
its optimal value, should be determined through the analysis of hadron structure
function. Such analysis has already deen done'™ and the resulting equations coming
from the consistency requirement of perturbation theory are

Bys/ 3lnpx = 0, (19a)
9Bys/dlnM = —b dvs (= —714s), (19b)



34 Memoirs of the Nara University No. 14

BBNS/BJJ;}S = —( (190)

Obviously Bxs should be independent of the anomalous dimension K¢ that appears
only in relation to the photon structure functionm, i. e.,
dBxs/dKis = 0. (20)

In order to carry out the optimization procedure we should at first evaluate the
response of the structure function (10) or (11) to changes of the scheme-labeling
parameters. We shall discuss the exact optimization starting from the “exact”
structure function up to the second order calculation, Eq.{10), and the optimization
in the small coupling limit starting from Eq.(11), separately.

B. Exact optimization

The response of the structure function (10) to changes of lnz and K is given

as follows;
aﬁ‘r B aB, -9 . ca \dxas dis
B =~ DrgLgy + dxs Bys ba (1+ca)(1+CE) A+ ca)

¢
X lt: dz [cKA?S zdns—2(]_ pdNstly Kao z‘d“‘s“(l—z)d“'s], (21a)

l+ca
-~ dws 1
OFT b 9B, + 3_vs(1+BNsﬁ)( 1 ca \ " (14 ca) s
BKN'S aKI\;S Heas
_€ 1
[ g et at
1+ca

where we have made use of Egs.(19a) and (20). It is to be noted that the integrals
in Eqgs. (21a) and (21b) are of the order <~ (a-dvs—1) and ¢~ (a-4vs), respactively.
Responses with respect to other variables InM and dis are complicated and it is
difficult to get useful conclusions. Therefore we here study consequences obtained
from Eqgs.(21).

According to the optimization procedure, we then impose that the response of
F r, Eqs.(21), to be of order @ (the consistency requirement of perturbation theory),

and obtain consistency equations

ﬁf—}, =0, (222)
0B, _ e (22b)
oK ¢ r BNS

Finally we get the optimization equations by setting the variations (2la, b) to be
exactly zero after the substitution of consistency equations (22a, b),

Bys = 0, (exact), (23a)
dys (Tiim-)d‘” 1+ ca) 4s Ji dz z-dvs—1(1—z) s — 1, (23b)
1+ca

The sclution to Eq.(23b) is
dys = 0, (24)
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which is exact up to the hadronic contributions of the order ¢ (a4*%), This result
(24) says that the optimal scheme lies within a class of schemes where the two-
loop hadronic anomalous dimension vanishes, thus justifies the assumtion adopted in
the analysis of the complete photon structure function especially in the large-n (or
large-x) regions. It is also to be noted that in the optimal scheme corrections to
the structure function coming from the constituent quark scattering vanish exactly,
B)vs=0.

C. Optimization in the small coupling limit

Here we consider the structure function in the small coupling limit, Eq. (11).
The response of Fr to changes of scheme-labeling parameters become as follows
(consistency equations (19) and (20) are used) ;

BE = 08,380+ bbys Bas *(L4cd) (14 ca) ¥
y [ K 14 ca + K — cKg(1 + difg)
1+ d)vs a dNS
¢ dys 1 a
0 1 —_ 1 ———
vy g KA di) — Kol 2] (25)
oF 3B : _ .
5]717[? = —bﬁrm}w— + bdxs(1+ ca) s E {—d.\'s d+ ¢ dys(14+ Bys @) (12]
X[ Kys 1+ca . Kas — cKgs(1 4+ dig)
1+ dgvs a dNS
cdytg
1 1 _ 1 __i,
i " {5 eKis+ dis) — K| 1, |

—Kds 14 ca cdys

+ (1+Bxsa) a T5dve 2 + e o |

1 kel @

X [*2— cKps(1 + dylg) KNS] mz] B ’ (25b)
OF" s OBr | 51+ ca) s [—cd+(1+B,vsd) In (1+ca)]
adydg adys

X[ Kd¥s 4 +oa Kys — cKs(1 + dys)
1+ dws a dns

cdyis

* il KteCl+ i) = Ko 15 ]

- L'Kn?s c c Ko (1+2ds K. a 5
* (1+BNSH)[- s + dys—1 [724 ws(1+2dys) = ”S] 1 +ca] » (25¢)
oFr _ . 3B, i (1 s g
2K s = b&,aKNlS + 8xs(l+ca) **S(1+Bysa) (?‘;; ol Tvea )

(25d)
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Imposing the consistency requirement, namely, the variations (25a-d) to be order

a, we get consistency equations ;

;fgfu -0, (26a)
8B, _ _dxs
oM = 3, K¥s (26b)
clns Kl

iy (26c)
ddys d; dxs
2B, dns

= . (26d)
oK s b, dys

Integrating the consistency equations for B,, Egs.(26), and those for Bys, Eqs.(19)

and (20), we get
Kys

B Ons Kbs (e 510 _ cdy 7

,(Q/M):b_ar_dg(m Iny — cdis + K0)+;,, (27a)
NS

Bus(Q/M) = dvs bln-S — cdls + cxs (27b)

M
where &, and t»s are scheme-invariants calculable in any scheme, and @ denotes
in general the large momentum scale inherent in the process considered (in the
present case the four-momentun transfered from the current).
Finally we set the variations (25a-d) to be at most ¢ (a%). With the use of

consistency equations (26a-d) we get the optimization equations,

BNS = 0 ’ (28&)
Ky u
TF e {dus bln;» + cdig — Bus) — Kys =0, (28b)
Ps K2
N§ M c NS . )
T+ drs (bln;‘— - 7 + Brs) — dus (cdys + Buxs)
+ 1 [”K°(1+2a‘1) K5} = 0 (28¢)
l_i.VS'—l ‘2‘ NS §¥8/ NS[ = ] C
dz\!s = 0 . (28d)

It is worth noticing that the first equation (28a) in fact holds exactly, and the
fourth equation (28d) holds up to the hadronic contributions of order ¢ (ad*s),
Other equations (28b and ¢) hold up to the order-g-accuracy level. By solving
the above equations, optimal values for the scheme-labeling parameters and for the

perturbation coefficients are determined as follows;

M
In = % (292)
Q ENS
lnM = _bst s (29}])
d
Kys = lﬁs}s cKys , (29¢)
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dis = 0, (29d)
and
Bys = 0, (30a)
_ Ows g Q ¢
B, = S K, (p1nd + il’ii;;) + (30b)

As a result we get the optimized structure function as

,. Bvs Kys Svs Ky
Fr = l + - s (‘NS —— J .._)
14+ dys a dns 1+ dys

where the optimal coupling constant @ is given as a solution to the equation

**IE + ¢cln (~ = ) = |b] 1n—A::f

- bdux, , (31)

1+ca i
= bl 12— £ (32
A NS

D. Optimization in the large-n limit

In order to see how the optimization based on the two-scale OPT has dealt with
the large second order corrections for large-n moments that might be of kinematical
origin, we here study the optimization in the large-n limit*.

By keeping the leading terms in the large-# limit for quantities appearing in the
optimization equations, we get the optimal value of the factorization scale M}, =
M5 (€) (in this subsection, the moment-index # is reproduced) as

M

ln(_Q_) ~ — } Inn , (33)

and the optimized coupling constant 4,7, = a(M,},) as

1 ~(ln In(M,},/ 4)
|b| ln(Mo:,: //1) ln® (Mo;(/A)
- i (34)

b} (@ns/4)

Expressing the optimized structure function Fi(opt) as

Freopt) = —5'% + ba(opt) (35)

aopt

we get(with the use of Eq.(31))
buopl)/ 8n = g lan + (1) . (36)

These results (33)-(36) are completely the same as those obtained in the kinemati-
cal analyses'?’'® where kinamatically singular terms 4ln’# are resummed to all
orders of the strong coupling constant &, and eventually absorbed into the rescaled
effective mass M}, with which the effective coupling constant runs, 4. ,=a(MJ,).
They show the same large-7 behavior as Egs.(33) and (34). As a result, the strue-

ture function calculated in terms of the rescaled coupling constant &, satisfies the
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same expression as Eq. (35) with the perturbation coefficient b.(2ff) showing the
same large-n behavior as Eq.(36)'®. With Eqs.(34) and (35) we can also show,
by following the analysis by Frazer and Rossi'”, that the structure function in the

x-space can be expressed as

Fiop(x, @) = h(x)/ a((1-x)4Q/ 4% + h(x) , (37)

where FiI = h(x)/a(Q%/4%) is the large-x form of the leading order result.

1V. Conclusions and Discussion

In this paper we applied the two-scale formalism of the optimized perturbation
theory (OPT) to the second order QCD calculation of the photon structure function.
In order to work out the complete optimization analytically without any assumptions,
we consider, not the complete photon structure function, but a simplified two-
component model that keeps the essential behavior of the complete structure function
and in fact becomes exact in the large-# limit. The result shows that the two-scale
formalism of OPT actually resolves completely the scheme-dependent ambiguities
inherent in perturbative QCD calculation, thus giving an unique QCD prediction.
This fact is to be compared with the analysis given in Ref. 7, where only the RS-
dependence is taken into account and the optimization cannot be worked out for
the photon structure function.

Analysis of the umique optimal result clarifies an another important observation.
The OPT based on the principle of minimal sensitivity {(PMS) has successfully
dealt with the large second order corrections in the large-# moment, which may be
of kinematical origin, precisely the same way as the kimematical approaches have

done'®'%),

At present we have no definite idea to understand why such “equi-
valence” between the OPT and the kinematical analyses has held**. Only we
can say now is that the OPT based on PMS has correctly taken into account
the kinematical boundary effects, and that the optimized perturbation series shows
an improved convergence behavior. This fact may justify the validity of the op-
timization based on PMS, giving it an another physical insight. A more detailed
analysis concerning how the OPT has dealt with the (kinematically) singular terms
in the perturbation coefficients has been given elsewhere'.

Finally we take notice of the fact that, as was shown in section IIl B, the op-
timal scheme lies within a class of schemes where the two-loop hadronic anomalous
dimension 7,5 vanishes. This fact 4 posteriori justifies the assumption utilized in
the OPT analysis of the complete photon structure function given in Ref. 17, where
optimization is carried out by restricting the parameter-space with the assumption
that the optimal scheme satisfies the above condition.
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